Macrowine 2021
IVES 9 IVES Conference Series 9 Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Abstract

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables. Samples were taken in a vineyard from 100% of veraison (24th February- 2014; 18.3±0.31°Brix) until technical maturity (14th April-2014; 24.4 ± 0.40°Brix). Total soluble (1) and insoluble polysaccharides (2), polysaccharides fractions by HPLC-RI (1) and anthocyanin and tannin extractability (3) were measured in five dates. Total soluble polysaccharides increase from 0.18 ± 0.03 at veraison to 0.50 ± 0.07g/g skin at technical maturity. In the same period insoluble polysaccharides decrease from 128.05 ± 9.33 to 69.00 ± 3.00 g/g skin. In the case of polysaccharides fractions (F) [neutral polysaccharides (F1), acid polysaccharides (F2) and oligosaccharides (F3)], only F2 change during the sampling dates increasing significantly its value in time. Anthocyanins and tannins increased their extractability in ≈ 18% and ≈ 10% in the sampling period, respectively. Pearson correlation coefficient between soluble polysaccharides and anthocyanin extractability was 0.86 and between soluble polysaccharides and tannin extractability was 0.76. The increase in soluble polysaccharides is closely related with anthocyanin and tannin extraction from grapes.

(1) Ayestarán, B., Z. Guadalupe, and D. León. 2004. Quantification of major grape polysaccharides (Tempranillo v.) released by macera¬tion enzymes during the fermentation process. Analytica Chim. Acta, 513(1): 29-39. (2) Hernandez-Hierro, J., Quijada-Morín, N., Martinez-Lapuente, L., Guadalupe, Z., Ayestarán, B., Rivas-Gonzalo, J. and M. Escribano-Bailón. 2014. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 146(1): 41-47. (3) Saint-Cricqde Gaulejac N., Vivas N., Glories Y., 1998. Maturité phénolique: définition et contrôle.Rev. Franc. Oenol., 173, 22-25 Acknowledgements: This study was supported by FONDECYT N°1140882 and N°3150322 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alvaro Peña-Neira*, Alvaro Peña-Neira, Claudio Pastenes, Elías Obreque Slier, Francisco Pavez-Roco, Mariona Gil Cortiella, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.