Macrowine 2021
IVES 9 IVES Conference Series 9 Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Abstract

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables. Samples were taken in a vineyard from 100% of veraison (24th February- 2014; 18.3±0.31°Brix) until technical maturity (14th April-2014; 24.4 ± 0.40°Brix). Total soluble (1) and insoluble polysaccharides (2), polysaccharides fractions by HPLC-RI (1) and anthocyanin and tannin extractability (3) were measured in five dates. Total soluble polysaccharides increase from 0.18 ± 0.03 at veraison to 0.50 ± 0.07g/g skin at technical maturity. In the same period insoluble polysaccharides decrease from 128.05 ± 9.33 to 69.00 ± 3.00 g/g skin. In the case of polysaccharides fractions (F) [neutral polysaccharides (F1), acid polysaccharides (F2) and oligosaccharides (F3)], only F2 change during the sampling dates increasing significantly its value in time. Anthocyanins and tannins increased their extractability in ≈ 18% and ≈ 10% in the sampling period, respectively. Pearson correlation coefficient between soluble polysaccharides and anthocyanin extractability was 0.86 and between soluble polysaccharides and tannin extractability was 0.76. The increase in soluble polysaccharides is closely related with anthocyanin and tannin extraction from grapes.

(1) Ayestarán, B., Z. Guadalupe, and D. León. 2004. Quantification of major grape polysaccharides (Tempranillo v.) released by macera¬tion enzymes during the fermentation process. Analytica Chim. Acta, 513(1): 29-39. (2) Hernandez-Hierro, J., Quijada-Morín, N., Martinez-Lapuente, L., Guadalupe, Z., Ayestarán, B., Rivas-Gonzalo, J. and M. Escribano-Bailón. 2014. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 146(1): 41-47. (3) Saint-Cricqde Gaulejac N., Vivas N., Glories Y., 1998. Maturité phénolique: définition et contrôle.Rev. Franc. Oenol., 173, 22-25 Acknowledgements: This study was supported by FONDECYT N°1140882 and N°3150322 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alvaro Peña-Neira*, Alvaro Peña-Neira, Claudio Pastenes, Elías Obreque Slier, Francisco Pavez-Roco, Mariona Gil Cortiella, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.