Macrowine 2021
IVES 9 IVES Conference Series 9 Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Abstract

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables. Samples were taken in a vineyard from 100% of veraison (24th February- 2014; 18.3±0.31°Brix) until technical maturity (14th April-2014; 24.4 ± 0.40°Brix). Total soluble (1) and insoluble polysaccharides (2), polysaccharides fractions by HPLC-RI (1) and anthocyanin and tannin extractability (3) were measured in five dates. Total soluble polysaccharides increase from 0.18 ± 0.03 at veraison to 0.50 ± 0.07g/g skin at technical maturity. In the same period insoluble polysaccharides decrease from 128.05 ± 9.33 to 69.00 ± 3.00 g/g skin. In the case of polysaccharides fractions (F) [neutral polysaccharides (F1), acid polysaccharides (F2) and oligosaccharides (F3)], only F2 change during the sampling dates increasing significantly its value in time. Anthocyanins and tannins increased their extractability in ≈ 18% and ≈ 10% in the sampling period, respectively. Pearson correlation coefficient between soluble polysaccharides and anthocyanin extractability was 0.86 and between soluble polysaccharides and tannin extractability was 0.76. The increase in soluble polysaccharides is closely related with anthocyanin and tannin extraction from grapes.

(1) Ayestarán, B., Z. Guadalupe, and D. León. 2004. Quantification of major grape polysaccharides (Tempranillo v.) released by macera¬tion enzymes during the fermentation process. Analytica Chim. Acta, 513(1): 29-39. (2) Hernandez-Hierro, J., Quijada-Morín, N., Martinez-Lapuente, L., Guadalupe, Z., Ayestarán, B., Rivas-Gonzalo, J. and M. Escribano-Bailón. 2014. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 146(1): 41-47. (3) Saint-Cricqde Gaulejac N., Vivas N., Glories Y., 1998. Maturité phénolique: définition et contrôle.Rev. Franc. Oenol., 173, 22-25 Acknowledgements: This study was supported by FONDECYT N°1140882 and N°3150322 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alvaro Peña-Neira*, Alvaro Peña-Neira, Claudio Pastenes, Elías Obreque Slier, Francisco Pavez-Roco, Mariona Gil Cortiella, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.