Macrowine 2021
IVES 9 IVES Conference Series 9 Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Abstract

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables. Samples were taken in a vineyard from 100% of veraison (24th February- 2014; 18.3±0.31°Brix) until technical maturity (14th April-2014; 24.4 ± 0.40°Brix). Total soluble (1) and insoluble polysaccharides (2), polysaccharides fractions by HPLC-RI (1) and anthocyanin and tannin extractability (3) were measured in five dates. Total soluble polysaccharides increase from 0.18 ± 0.03 at veraison to 0.50 ± 0.07g/g skin at technical maturity. In the same period insoluble polysaccharides decrease from 128.05 ± 9.33 to 69.00 ± 3.00 g/g skin. In the case of polysaccharides fractions (F) [neutral polysaccharides (F1), acid polysaccharides (F2) and oligosaccharides (F3)], only F2 change during the sampling dates increasing significantly its value in time. Anthocyanins and tannins increased their extractability in ≈ 18% and ≈ 10% in the sampling period, respectively. Pearson correlation coefficient between soluble polysaccharides and anthocyanin extractability was 0.86 and between soluble polysaccharides and tannin extractability was 0.76. The increase in soluble polysaccharides is closely related with anthocyanin and tannin extraction from grapes.

(1) Ayestarán, B., Z. Guadalupe, and D. León. 2004. Quantification of major grape polysaccharides (Tempranillo v.) released by macera¬tion enzymes during the fermentation process. Analytica Chim. Acta, 513(1): 29-39. (2) Hernandez-Hierro, J., Quijada-Morín, N., Martinez-Lapuente, L., Guadalupe, Z., Ayestarán, B., Rivas-Gonzalo, J. and M. Escribano-Bailón. 2014. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 146(1): 41-47. (3) Saint-Cricqde Gaulejac N., Vivas N., Glories Y., 1998. Maturité phénolique: définition et contrôle.Rev. Franc. Oenol., 173, 22-25 Acknowledgements: This study was supported by FONDECYT N°1140882 and N°3150322 Projects.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Alvaro Peña-Neira*, Alvaro Peña-Neira, Claudio Pastenes, Elías Obreque Slier, Francisco Pavez-Roco, Mariona Gil Cortiella, Remigio López

*Universidad de Chile

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.