Macrowine 2021
IVES 9 IVES Conference Series 9 Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

Abstract

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts. In contrast to the advantages of GSH, other researchers found that GSH can foster the formation of H2S and other sulfide off-flavors during fermentation. Even during bottle aging, reductive odors may occur as a late consequence of high GSH levels during winemaking. In order to examine the impact of GSH on the formation of sulfide off-flavors, colour, and sensory characteristics, Riesling, Sauvignon blanc, and Chardonnay grapes were processed under different conditions to obtain musts with high and low phenolic content. Based on the original GSH concentration the HGR was adjusted using GSH or GSH-enriched IDY. The resulting wines were either racked off the lees or submitted to sur lie aging for 4 months. As already observed by others, GSH additions increased the GRP concentration in must and preserved their green color. At the same time, these musts tended to form higher concentrations of H2S, methyl and ethyl mercaptan during fermentation suggesting that excessive GSH is responsible for the production of volatile mercaptan metabolites. Normally, these compounds were degraded at the end of fermentation and dropped below sensory threshold as soon as the wines were racked off the gross lees. However, the decrease in mercaptan content, partly explained by the oxidative formation of disulfides, was strongly impaired when o-diphenols were low in concentration (e.g. in free run juice) or when musts were treated with ascorbic acid and SO2. This observation suggests that an effective mercaptan deodorization in young wines depends on the oxidizability of o-diphenols. Bottled wines were generally lower in GSH than musts. However, elevated levels of GSH could be determined after sur lie aging, possibly explaining the protection against oxidation in this aging regime. Sensory analysis after bottling revealed that the fruity odor of Riesling and Sauvignon blanc wines was enhanced when GSH was added to must in moderate concentrations. Excessive GSH, especially in musts with a low phenolic content (e.g. from whole-cluster pressing), could lead to sensorially noticeable sulfide off-flavor in the later wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Dominik Durner*, Hans-Georg Schmarr, Pascal Wegmann-Herr, Sebastian Ullrich, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The use of cation exchange resins for wine acidity adjustment: Optimization of the process and the effects on tartrate formation and oxidative stability

Acidity adjustments are key to microbial control, sensory quality and wine longevity. Acidification with cation exchange resins -in acid cycle- offers the possibility to reduce the pH by exchanging wine cations, such as potassium (K+), for hydrogen ions (H+). During the exchange process, the removal of potassium and calcium ions contributes to limiting the formation of tartrate salts, thus offering an alternative solution to conventional methods for tartrate stability. Moreover, the reduction of wine pH and the removal of metals catalyzers (e.g. iron) could positively impact the wine’s oxidative stability. Therefore, the aims of this work were (a) to optimize the ion exchange process by testing different volumes and concentrations of sulfuric acid (H2SO4) during the acid cycle, (b) evaluate the effects of the ion exchange process on the formation of tartrate salts, and (c) analyze the oxidative stability of the treated wines.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.