Macrowine 2021
IVES 9 IVES Conference Series 9 Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

Abstract

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts. In contrast to the advantages of GSH, other researchers found that GSH can foster the formation of H2S and other sulfide off-flavors during fermentation. Even during bottle aging, reductive odors may occur as a late consequence of high GSH levels during winemaking. In order to examine the impact of GSH on the formation of sulfide off-flavors, colour, and sensory characteristics, Riesling, Sauvignon blanc, and Chardonnay grapes were processed under different conditions to obtain musts with high and low phenolic content. Based on the original GSH concentration the HGR was adjusted using GSH or GSH-enriched IDY. The resulting wines were either racked off the lees or submitted to sur lie aging for 4 months. As already observed by others, GSH additions increased the GRP concentration in must and preserved their green color. At the same time, these musts tended to form higher concentrations of H2S, methyl and ethyl mercaptan during fermentation suggesting that excessive GSH is responsible for the production of volatile mercaptan metabolites. Normally, these compounds were degraded at the end of fermentation and dropped below sensory threshold as soon as the wines were racked off the gross lees. However, the decrease in mercaptan content, partly explained by the oxidative formation of disulfides, was strongly impaired when o-diphenols were low in concentration (e.g. in free run juice) or when musts were treated with ascorbic acid and SO2. This observation suggests that an effective mercaptan deodorization in young wines depends on the oxidizability of o-diphenols. Bottled wines were generally lower in GSH than musts. However, elevated levels of GSH could be determined after sur lie aging, possibly explaining the protection against oxidation in this aging regime. Sensory analysis after bottling revealed that the fruity odor of Riesling and Sauvignon blanc wines was enhanced when GSH was added to must in moderate concentrations. Excessive GSH, especially in musts with a low phenolic content (e.g. from whole-cluster pressing), could lead to sensorially noticeable sulfide off-flavor in the later wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Dominik Durner*, Hans-Georg Schmarr, Pascal Wegmann-Herr, Sebastian Ullrich, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.