Macrowine 2021
IVES 9 IVES Conference Series 9 Some applications come from a method to concentrate proteins

Some applications come from a method to concentrate proteins

Abstract

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols. Due to all these defects, alternative test should be developed. The perfect protein assay would exhibit the following characteristics: fast, easy to use, sensitive, accurate, precice and free from interferences. Futhermore this assay should be compatible with all substances commonly found in protein samples and at low concentration. Our purpose in this work is to combine the concentration of proteins by bentonite with separation electrophoretic 1D SDS Page and to examine some applications. First, wines were fined with 100g/hl of bentonite is largely sufficient to adsorbe all proteins (Paetzold and al.,1990). In these conditions, we observed at low concentrations of bentonite (under 20g/hl), the bentonite Electra® adsorbed only β glucanases and chitinases. Second after desorption by Laemmli buffer, proteins were separated by SDS-PAGE and quantified after coloration with Coomassie Blue R-250 by scanning coupled to the image analysis TotalLab software (Sauvage and al., 2010). The gels after destaining were scanned with a transmission scanner at 300 dpi to obtain a digitised image. The software compared the volume (area x intensity of each pixel) of each band to the volume of BSA band (included in standard file). Each band was characterized by the molecular weight and the quantity of proteins expressed in µg equivalent BSA. The sum of each band gave the total pool of proteins included in each sample. The standard deviation measured on 6 same sample on Chardonnay wine was 11%. The response was linear for each band up to 1µg/band. By this method we also got the relative composition of the majority of proteins. Last, but not least, proteins were desorbed from bentonite with buffer to denature proteins or only with a buffer to conserve the native form of proteins (like Tris buffer or NaCl solution). After this experimentation we checked if [1] Marchal R. Ph. Thesis, university of Reims, 1995.

[1] Paetzold M., Dulau L., Dubourdieu D. J.Inter.Sci.Vigne Vin, 1990, 24, 13-28. [2] Pocock K.F., Waters E.J. Aust.J.Grape Wine Res., 4, 136-139. [4] Sauvage F.X., Bach B., Moutounet M., Vernhet A. 2009, 118, 26-34.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Patrick Chemardin

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.