Macrowine 2021
IVES 9 IVES Conference Series 9 Some applications come from a method to concentrate proteins

Some applications come from a method to concentrate proteins

Abstract

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols. Due to all these defects, alternative test should be developed. The perfect protein assay would exhibit the following characteristics: fast, easy to use, sensitive, accurate, precice and free from interferences. Futhermore this assay should be compatible with all substances commonly found in protein samples and at low concentration. Our purpose in this work is to combine the concentration of proteins by bentonite with separation electrophoretic 1D SDS Page and to examine some applications. First, wines were fined with 100g/hl of bentonite is largely sufficient to adsorbe all proteins (Paetzold and al.,1990). In these conditions, we observed at low concentrations of bentonite (under 20g/hl), the bentonite Electra® adsorbed only β glucanases and chitinases. Second after desorption by Laemmli buffer, proteins were separated by SDS-PAGE and quantified after coloration with Coomassie Blue R-250 by scanning coupled to the image analysis TotalLab software (Sauvage and al., 2010). The gels after destaining were scanned with a transmission scanner at 300 dpi to obtain a digitised image. The software compared the volume (area x intensity of each pixel) of each band to the volume of BSA band (included in standard file). Each band was characterized by the molecular weight and the quantity of proteins expressed in µg equivalent BSA. The sum of each band gave the total pool of proteins included in each sample. The standard deviation measured on 6 same sample on Chardonnay wine was 11%. The response was linear for each band up to 1µg/band. By this method we also got the relative composition of the majority of proteins. Last, but not least, proteins were desorbed from bentonite with buffer to denature proteins or only with a buffer to conserve the native form of proteins (like Tris buffer or NaCl solution). After this experimentation we checked if [1] Marchal R. Ph. Thesis, university of Reims, 1995.

[1] Paetzold M., Dulau L., Dubourdieu D. J.Inter.Sci.Vigne Vin, 1990, 24, 13-28. [2] Pocock K.F., Waters E.J. Aust.J.Grape Wine Res., 4, 136-139. [4] Sauvage F.X., Bach B., Moutounet M., Vernhet A. 2009, 118, 26-34.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Patrick Chemardin

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Analysis of the oenological potentials of different oak forests in Hungary

Like France, Hungary has many oak forests used for making barrels since many years. But if the differences between the woods of the North, the East and the South-West forests of France are well known, this is probably not the case of Hungarian forests. However taking into account the essential differences of climates and soils, differences must be significant and the general name “Hungarian oak” must not have any real meaning. We have studied precisely (determination of concentrations of volatile and non-volatile wood compounds, anatomical criteria, measurement of antioxidant capacity) of oaks collected from northeastern Hungary and others collected from the Danube valley in the northwest of the country.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.