Macrowine 2021
IVES 9 IVES Conference Series 9 Some applications come from a method to concentrate proteins

Some applications come from a method to concentrate proteins

Abstract

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols. Due to all these defects, alternative test should be developed. The perfect protein assay would exhibit the following characteristics: fast, easy to use, sensitive, accurate, precice and free from interferences. Futhermore this assay should be compatible with all substances commonly found in protein samples and at low concentration. Our purpose in this work is to combine the concentration of proteins by bentonite with separation electrophoretic 1D SDS Page and to examine some applications. First, wines were fined with 100g/hl of bentonite is largely sufficient to adsorbe all proteins (Paetzold and al.,1990). In these conditions, we observed at low concentrations of bentonite (under 20g/hl), the bentonite Electra® adsorbed only β glucanases and chitinases. Second after desorption by Laemmli buffer, proteins were separated by SDS-PAGE and quantified after coloration with Coomassie Blue R-250 by scanning coupled to the image analysis TotalLab software (Sauvage and al., 2010). The gels after destaining were scanned with a transmission scanner at 300 dpi to obtain a digitised image. The software compared the volume (area x intensity of each pixel) of each band to the volume of BSA band (included in standard file). Each band was characterized by the molecular weight and the quantity of proteins expressed in µg equivalent BSA. The sum of each band gave the total pool of proteins included in each sample. The standard deviation measured on 6 same sample on Chardonnay wine was 11%. The response was linear for each band up to 1µg/band. By this method we also got the relative composition of the majority of proteins. Last, but not least, proteins were desorbed from bentonite with buffer to denature proteins or only with a buffer to conserve the native form of proteins (like Tris buffer or NaCl solution). After this experimentation we checked if [1] Marchal R. Ph. Thesis, university of Reims, 1995.

[1] Paetzold M., Dulau L., Dubourdieu D. J.Inter.Sci.Vigne Vin, 1990, 24, 13-28. [2] Pocock K.F., Waters E.J. Aust.J.Grape Wine Res., 4, 136-139. [4] Sauvage F.X., Bach B., Moutounet M., Vernhet A. 2009, 118, 26-34.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Patrick Chemardin

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.

Study of the content of amino acids and biogenic amines in sparkling red wines

The production of red sparkling wines is lower in Spain in comparison with the winemaking of white or rosé sparkling wines. In red sparkling wine processing it is essential to obtain suitable base wines that should have moderate alcohol content, high acidity, good color values, an adequate mouth-feel and a sweet tannin. Grapes for sparkling wine production have to be harvested at low maturity stages, with lower alcohol contents and higher acidities, which will that the phenolic maturity of the grapes is also low, showing green tannins. This paper analyses different treatments in order to minimize these inconveniences: cold maceration-prefermentation and delestage to elaborate the grapes with lower maturity, must nanofiltration, and the partial osmosis of the wines made from grapes with an adequate maturity degree.

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.