Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Abstract

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation. In this study, the response of several grape genotypes to application of controlled doses of oxygen was investigated over three consecutive vintages. Healthy grapes were harvested at maturity form a single experimental vineyard and crushed in controlled conditions. The must obtained was submitted to three consecutive oxygen saturations (approx. 8 mg/L of oxygen). Oxygen consumption kinetics were measured using a chemioluminescence multisensor apparatus. Upon consumption of each saturation, samples were submitted to spectrophotometric analyses to assess oxidation-induced changes to relevant parameters such as absorbance at 280 nm, 320 nm and 420 nm. Voltammetric analyses were also carried out using a Nomasense Polyscan potentiostat with screen printed electrodes to assess the evolution of the entire must oxidizable fraction, including ortho-diphenols. Depending on the vintage, between four and eight genotypes were analyzed, with each oxidation experiment carried out in four replicates. Oxygen consumption rates varied considerably among samples and vintages. Genotypes could be divided in slow (0.07-0.17 mg/L/min) and fast (0.35-0.43 mg/L/min) oxygen consuming, and this was not clearly associate with Folin-Ciocalteu index. Minor changes were observed at the end of each oxidation cycle for UV-Vis parameters such as Abs 280 and 320, while Abs 420 generally increased, in particular during the 2015 trial. Electrochemical analysis revealed major changes in the content and profile of oxidizable compounds, which decreased with each oxidation cycle. The patterns of such changes, namely the regions of the voltammogram mostly affected by oxidation, were found to be genotype-dependent, with vintage only having a minor influence. Specific oxidation patterns could be associated with either slow or fast oxygen consuming musts. These data indicate that the response of grape must to oxidation is linked to specific compositional characteristics (phenolic profiles, enzymes etc) which can be more effectively investigated and controlled by electrochemical methods rather than conventional spectrophotometric approaches.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maurizio Ugliano*, Jean Baptiste Dieval, Nelly Champeau, Stephane Vidal, Stephanie Begrand

*University of Verona

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.