Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Abstract

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation. In this study, the response of several grape genotypes to application of controlled doses of oxygen was investigated over three consecutive vintages. Healthy grapes were harvested at maturity form a single experimental vineyard and crushed in controlled conditions. The must obtained was submitted to three consecutive oxygen saturations (approx. 8 mg/L of oxygen). Oxygen consumption kinetics were measured using a chemioluminescence multisensor apparatus. Upon consumption of each saturation, samples were submitted to spectrophotometric analyses to assess oxidation-induced changes to relevant parameters such as absorbance at 280 nm, 320 nm and 420 nm. Voltammetric analyses were also carried out using a Nomasense Polyscan potentiostat with screen printed electrodes to assess the evolution of the entire must oxidizable fraction, including ortho-diphenols. Depending on the vintage, between four and eight genotypes were analyzed, with each oxidation experiment carried out in four replicates. Oxygen consumption rates varied considerably among samples and vintages. Genotypes could be divided in slow (0.07-0.17 mg/L/min) and fast (0.35-0.43 mg/L/min) oxygen consuming, and this was not clearly associate with Folin-Ciocalteu index. Minor changes were observed at the end of each oxidation cycle for UV-Vis parameters such as Abs 280 and 320, while Abs 420 generally increased, in particular during the 2015 trial. Electrochemical analysis revealed major changes in the content and profile of oxidizable compounds, which decreased with each oxidation cycle. The patterns of such changes, namely the regions of the voltammogram mostly affected by oxidation, were found to be genotype-dependent, with vintage only having a minor influence. Specific oxidation patterns could be associated with either slow or fast oxygen consuming musts. These data indicate that the response of grape must to oxidation is linked to specific compositional characteristics (phenolic profiles, enzymes etc) which can be more effectively investigated and controlled by electrochemical methods rather than conventional spectrophotometric approaches.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maurizio Ugliano*, Jean Baptiste Dieval, Nelly Champeau, Stephane Vidal, Stephanie Begrand

*University of Verona

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.