Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Abstract

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation. In this study, the response of several grape genotypes to application of controlled doses of oxygen was investigated over three consecutive vintages. Healthy grapes were harvested at maturity form a single experimental vineyard and crushed in controlled conditions. The must obtained was submitted to three consecutive oxygen saturations (approx. 8 mg/L of oxygen). Oxygen consumption kinetics were measured using a chemioluminescence multisensor apparatus. Upon consumption of each saturation, samples were submitted to spectrophotometric analyses to assess oxidation-induced changes to relevant parameters such as absorbance at 280 nm, 320 nm and 420 nm. Voltammetric analyses were also carried out using a Nomasense Polyscan potentiostat with screen printed electrodes to assess the evolution of the entire must oxidizable fraction, including ortho-diphenols. Depending on the vintage, between four and eight genotypes were analyzed, with each oxidation experiment carried out in four replicates. Oxygen consumption rates varied considerably among samples and vintages. Genotypes could be divided in slow (0.07-0.17 mg/L/min) and fast (0.35-0.43 mg/L/min) oxygen consuming, and this was not clearly associate with Folin-Ciocalteu index. Minor changes were observed at the end of each oxidation cycle for UV-Vis parameters such as Abs 280 and 320, while Abs 420 generally increased, in particular during the 2015 trial. Electrochemical analysis revealed major changes in the content and profile of oxidizable compounds, which decreased with each oxidation cycle. The patterns of such changes, namely the regions of the voltammogram mostly affected by oxidation, were found to be genotype-dependent, with vintage only having a minor influence. Specific oxidation patterns could be associated with either slow or fast oxygen consuming musts. These data indicate that the response of grape must to oxidation is linked to specific compositional characteristics (phenolic profiles, enzymes etc) which can be more effectively investigated and controlled by electrochemical methods rather than conventional spectrophotometric approaches.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maurizio Ugliano*, Jean Baptiste Dieval, Nelly Champeau, Stephane Vidal, Stephanie Begrand

*University of Verona

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

How pressing techniques affect must composition and wine quality of Pinot blanc

This study investigates how the sensory profile of Pinot Blanc is affected from different maceration and pressing techniques. Grapes were sourced from four vineyards in the village Tramin in South Tyrol. For the experiment 200 kg of grapes from each vineyard site were hand picked the day before harvest for the commercial winery took place. Grapes were stored over night at 4°C, homogenized and processed in the experimental winery at Laimburg research centre the day after harvest. Four different pressing techniques were applied in duplicates of 100kg each.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins