Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Abstract

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation. In this study, the response of several grape genotypes to application of controlled doses of oxygen was investigated over three consecutive vintages. Healthy grapes were harvested at maturity form a single experimental vineyard and crushed in controlled conditions. The must obtained was submitted to three consecutive oxygen saturations (approx. 8 mg/L of oxygen). Oxygen consumption kinetics were measured using a chemioluminescence multisensor apparatus. Upon consumption of each saturation, samples were submitted to spectrophotometric analyses to assess oxidation-induced changes to relevant parameters such as absorbance at 280 nm, 320 nm and 420 nm. Voltammetric analyses were also carried out using a Nomasense Polyscan potentiostat with screen printed electrodes to assess the evolution of the entire must oxidizable fraction, including ortho-diphenols. Depending on the vintage, between four and eight genotypes were analyzed, with each oxidation experiment carried out in four replicates. Oxygen consumption rates varied considerably among samples and vintages. Genotypes could be divided in slow (0.07-0.17 mg/L/min) and fast (0.35-0.43 mg/L/min) oxygen consuming, and this was not clearly associate with Folin-Ciocalteu index. Minor changes were observed at the end of each oxidation cycle for UV-Vis parameters such as Abs 280 and 320, while Abs 420 generally increased, in particular during the 2015 trial. Electrochemical analysis revealed major changes in the content and profile of oxidizable compounds, which decreased with each oxidation cycle. The patterns of such changes, namely the regions of the voltammogram mostly affected by oxidation, were found to be genotype-dependent, with vintage only having a minor influence. Specific oxidation patterns could be associated with either slow or fast oxygen consuming musts. These data indicate that the response of grape must to oxidation is linked to specific compositional characteristics (phenolic profiles, enzymes etc) which can be more effectively investigated and controlled by electrochemical methods rather than conventional spectrophotometric approaches.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maurizio Ugliano*, Jean Baptiste Dieval, Nelly Champeau, Stephane Vidal, Stephanie Begrand

*University of Verona

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Identification, quantification and organoleptic impact of « dried fruit » molecular markers in Merlot and Cabernet Sauvignon grapes and in red wines

The aromas found in young Bordeaux red wines made with Merlot and Cabernet Sauvignon suggest a complex mixture of aromas of fresh red fruits such as cherry or blackberry for Merlot, and strawberry or blackcurrant for Cabernet Sauvignon. The aromas of these wines are closely linked with the maturity of the grapes. The climate change that has occurred during the last decade in Bordeaux has induced changes in the ripening conditions of grape berries. It is now widely admitted that over-ripening of the berries during hot and dry summers results in the development of characteristic flavors reminiscent of cooked fruits (fig, prune). The presence of these overriding odors found in both musts and young wines affects the quality and subtlety of the wine flavor and may shorten its shelf life.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.