Macrowine 2021
IVES 9 IVES Conference Series 9 Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Abstract

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation. In this study, the response of several grape genotypes to application of controlled doses of oxygen was investigated over three consecutive vintages. Healthy grapes were harvested at maturity form a single experimental vineyard and crushed in controlled conditions. The must obtained was submitted to three consecutive oxygen saturations (approx. 8 mg/L of oxygen). Oxygen consumption kinetics were measured using a chemioluminescence multisensor apparatus. Upon consumption of each saturation, samples were submitted to spectrophotometric analyses to assess oxidation-induced changes to relevant parameters such as absorbance at 280 nm, 320 nm and 420 nm. Voltammetric analyses were also carried out using a Nomasense Polyscan potentiostat with screen printed electrodes to assess the evolution of the entire must oxidizable fraction, including ortho-diphenols. Depending on the vintage, between four and eight genotypes were analyzed, with each oxidation experiment carried out in four replicates. Oxygen consumption rates varied considerably among samples and vintages. Genotypes could be divided in slow (0.07-0.17 mg/L/min) and fast (0.35-0.43 mg/L/min) oxygen consuming, and this was not clearly associate with Folin-Ciocalteu index. Minor changes were observed at the end of each oxidation cycle for UV-Vis parameters such as Abs 280 and 320, while Abs 420 generally increased, in particular during the 2015 trial. Electrochemical analysis revealed major changes in the content and profile of oxidizable compounds, which decreased with each oxidation cycle. The patterns of such changes, namely the regions of the voltammogram mostly affected by oxidation, were found to be genotype-dependent, with vintage only having a minor influence. Specific oxidation patterns could be associated with either slow or fast oxygen consuming musts. These data indicate that the response of grape must to oxidation is linked to specific compositional characteristics (phenolic profiles, enzymes etc) which can be more effectively investigated and controlled by electrochemical methods rather than conventional spectrophotometric approaches.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Maurizio Ugliano*, Jean Baptiste Dieval, Nelly Champeau, Stephane Vidal, Stephanie Begrand

*University of Verona

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.

Comprehensive exploration of wine aroma-related compounds as promoted by alternative vinification procedures in case of Zelen (Vitis vinifera L.) grapes processing

Not only vintner’s decisions in the vineyard, but also winemaker’s choices of technology approaches in the cellar play a significant role in the final wine style and quality. Whereas traditional technologies within chosen terroir are quite well explored and thus somehow predictable, there is no proper knowledge available on possible outcomes in case of implementing novel, alternative winemaking strategies. To reveal their effects on wine aroma compounds and sensory characteristics, two alternative strategies
(cryoextraction or addition of whole grape berries during last stages of fermentation) were compared to classical Vipava valley winemaking approach as normally used for an autochthonous variety Zelen. After separate vinification and bottling, all the experimental wines were subjected to semiquantitative metabolic profiling of volatile compounds (VOCs) by means of GC/MS and were then also sensorialy evaluated by pre-trained panel.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.