Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Abstract

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization. The lack of reliable tests assessing risk of protein clouding during bottle storage is a recurring problem of winemakers. The methods used to evaluate wine stability involve inducing haze formation (by heat, trichloroacetic acid, and ethanol) and then measuring of turbidity using spectrophotometers, turbidimeters or nephelometers. Currently used test assessing haze potential involves heating which often cause overdosing of fining agent. Moreover, it was shown that the composition of precipitate formed using above mentioned methods was not the same as naturally formed precipitate. A new and reliable method evaluating the haze potential, relevant to natural haze formation is needed. Different tests have been proposed to assess haze formation in wine. Most of these tests are based upon different types of procedures, leading to protein aggregation and precipitation. Heat stability trials, based on heat-induced precipitation, are the most common. These tests are empirical and do not necessarily reflect changes and destabilization phenomena liable to occur in real wine storage conditions. The fact that the same tests, associated with bentonite fining trials, are used to determine the bentonite doses needed to stabilize wines, leads to doses of bentonite much too high and consequently affecting wine quality. Given that the mechanisms underlying haze formation are still not fully understood, the aim of this work was to investigate the feasibility of using Dynamic light scattering (DLS) to understand the occurrence of haze formation, and the implication of wine compounds (protein, polyphenols, polysaccharides). DLS is a non-invasive, well-established technique for measuring the size and size distribution of molecules and particles typically in the submicron region, and with the latest technology lower than 1 nm. DLS directly measures fluctuations in scattering intensity due to Brownian motion, which are analyzed to determine the translational diffusion coefficient Dt and hence an effective measure of molecular size, the hydrodynamic radius Rh. DLS could also provide a rough measure of size distributions in order to assess populations of aggregates, and characterize the colloidal stability of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Agnieszka Kosinska Cagnazzo, Julien Ducruet, Marc Mathieu, Wilfried Andlauer

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.