Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Abstract

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization. The lack of reliable tests assessing risk of protein clouding during bottle storage is a recurring problem of winemakers. The methods used to evaluate wine stability involve inducing haze formation (by heat, trichloroacetic acid, and ethanol) and then measuring of turbidity using spectrophotometers, turbidimeters or nephelometers. Currently used test assessing haze potential involves heating which often cause overdosing of fining agent. Moreover, it was shown that the composition of precipitate formed using above mentioned methods was not the same as naturally formed precipitate. A new and reliable method evaluating the haze potential, relevant to natural haze formation is needed. Different tests have been proposed to assess haze formation in wine. Most of these tests are based upon different types of procedures, leading to protein aggregation and precipitation. Heat stability trials, based on heat-induced precipitation, are the most common. These tests are empirical and do not necessarily reflect changes and destabilization phenomena liable to occur in real wine storage conditions. The fact that the same tests, associated with bentonite fining trials, are used to determine the bentonite doses needed to stabilize wines, leads to doses of bentonite much too high and consequently affecting wine quality. Given that the mechanisms underlying haze formation are still not fully understood, the aim of this work was to investigate the feasibility of using Dynamic light scattering (DLS) to understand the occurrence of haze formation, and the implication of wine compounds (protein, polyphenols, polysaccharides). DLS is a non-invasive, well-established technique for measuring the size and size distribution of molecules and particles typically in the submicron region, and with the latest technology lower than 1 nm. DLS directly measures fluctuations in scattering intensity due to Brownian motion, which are analyzed to determine the translational diffusion coefficient Dt and hence an effective measure of molecular size, the hydrodynamic radius Rh. DLS could also provide a rough measure of size distributions in order to assess populations of aggregates, and characterize the colloidal stability of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Agnieszka Kosinska Cagnazzo, Julien Ducruet, Marc Mathieu, Wilfried Andlauer

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The impact of branched chain and aromatic amino acids on fermentation kinetics and aroma biosynthesis by wine yeast Saccharomyces cerevisiae

One of the major determinants of wine quality is the aroma. Wine aroma is the human perception of the matrix of grape and yeast derived volatiles and their interaction that contribute to flavour wine. Most common are higher alcohols, ester and aldehydes. In previous studies the formation of characteristic volatile compounds have been linked to the metabolism of branched-chain and aromatic amino acids
(BCAAs) in synthetic grape must. Here we report on an investigation to assess the impact of the initial amino acid concentration on the production of aroma compounds by the industrial yeast VIN13 grown in both synthetic and real grape musts.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.