Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Abstract

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization. The lack of reliable tests assessing risk of protein clouding during bottle storage is a recurring problem of winemakers. The methods used to evaluate wine stability involve inducing haze formation (by heat, trichloroacetic acid, and ethanol) and then measuring of turbidity using spectrophotometers, turbidimeters or nephelometers. Currently used test assessing haze potential involves heating which often cause overdosing of fining agent. Moreover, it was shown that the composition of precipitate formed using above mentioned methods was not the same as naturally formed precipitate. A new and reliable method evaluating the haze potential, relevant to natural haze formation is needed. Different tests have been proposed to assess haze formation in wine. Most of these tests are based upon different types of procedures, leading to protein aggregation and precipitation. Heat stability trials, based on heat-induced precipitation, are the most common. These tests are empirical and do not necessarily reflect changes and destabilization phenomena liable to occur in real wine storage conditions. The fact that the same tests, associated with bentonite fining trials, are used to determine the bentonite doses needed to stabilize wines, leads to doses of bentonite much too high and consequently affecting wine quality. Given that the mechanisms underlying haze formation are still not fully understood, the aim of this work was to investigate the feasibility of using Dynamic light scattering (DLS) to understand the occurrence of haze formation, and the implication of wine compounds (protein, polyphenols, polysaccharides). DLS is a non-invasive, well-established technique for measuring the size and size distribution of molecules and particles typically in the submicron region, and with the latest technology lower than 1 nm. DLS directly measures fluctuations in scattering intensity due to Brownian motion, which are analyzed to determine the translational diffusion coefficient Dt and hence an effective measure of molecular size, the hydrodynamic radius Rh. DLS could also provide a rough measure of size distributions in order to assess populations of aggregates, and characterize the colloidal stability of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Agnieszka Kosinska Cagnazzo, Julien Ducruet, Marc Mathieu, Wilfried Andlauer

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

The impact of different yeasts and harvest time on the wine quality of Beihong and Beimei (<I>V. vinifera x V. amurensis</I>)

Beihong and Beimei are two wine cultivars from ‘Muscat Hamberg’ (V. vinifera L.) and wild V. amurensis Rupr., which were released in China in 2008. Here,two enology practices were reported. Firstly, the impact of different yeasts including D254, GRE, K1, D21 and BDX on dry wine quality of Beihong and Beimei was investigated. For Beihong, among wines fermented by all yeasts, residual sugar content was the lowest, total anthocyanin and resveratrol contents were the highest in the wine by D254. However, the wine by D254 had lower titrable acid than those by the other yeasts except BDX.