Macrowine 2021
IVES 9 IVES Conference Series 9 Some applications come from a method to concentrate proteins

Some applications come from a method to concentrate proteins

Abstract

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols. Due to all these defects, alternative test should be developed. The perfect protein assay would exhibit the following characteristics: fast, easy to use, sensitive, accurate, precice and free from interferences. Futhermore this assay should be compatible with all substances commonly found in protein samples and at low concentration. Our purpose in this work is to combine the concentration of proteins by bentonite with separation electrophoretic 1D SDS Page and to examine some applications. First, wines were fined with 100g/hl of bentonite is largely sufficient to adsorbe all proteins (Paetzold and al.,1990). In these conditions, we observed at low concentrations of bentonite (under 20g/hl), the bentonite Electra® adsorbed only β glucanases and chitinases. Second after desorption by Laemmli buffer, proteins were separated by SDS-PAGE and quantified after coloration with Coomassie Blue R-250 by scanning coupled to the image analysis TotalLab software (Sauvage and al., 2010). The gels after destaining were scanned with a transmission scanner at 300 dpi to obtain a digitised image. The software compared the volume (area x intensity of each pixel) of each band to the volume of BSA band (included in standard file). Each band was characterized by the molecular weight and the quantity of proteins expressed in µg equivalent BSA. The sum of each band gave the total pool of proteins included in each sample. The standard deviation measured on 6 same sample on Chardonnay wine was 11%. The response was linear for each band up to 1µg/band. By this method we also got the relative composition of the majority of proteins. Last, but not least, proteins were desorbed from bentonite with buffer to denature proteins or only with a buffer to conserve the native form of proteins (like Tris buffer or NaCl solution). After this experimentation we checked if [1] Marchal R. Ph. Thesis, university of Reims, 1995.

[1] Paetzold M., Dulau L., Dubourdieu D. J.Inter.Sci.Vigne Vin, 1990, 24, 13-28. [2] Pocock K.F., Waters E.J. Aust.J.Grape Wine Res., 4, 136-139. [4] Sauvage F.X., Bach B., Moutounet M., Vernhet A. 2009, 118, 26-34.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Francois-Xavier Sauvage*, Patrick Chemardin

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Development of a new sustainable filtering media for wine and beer clarification and sterilisation

Different separation techniques are frequently used during vinification process. Nowadays, clarification and microbiological stabilization of wine or beer can be done using precoat filters or crossflow filters to remove yeast and bacteria. Kieselguhr powders are the most used filter aids for precoat filtration. Their crystalline structure and their pulverulent nature induce ecotoxicological risks when used. Moreover, regeneration and reuse of these filter aids is not efficient and the filtration waste requires cost effective retreatment.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.