Macrowine 2021
IVES 9 IVES Conference Series 9 Microbial life in the grapevine: what can we expect from the leaf microbiome?

Microbial life in the grapevine: what can we expect from the leaf microbiome?

Abstract

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents. In particular, these VOCs have been shown to promote root growth and thereby nutrient acquisition and growth, but also to induce plant resistance against diseases [2-4]. Their effects on fungal and oomycete pathogens range from mycelium growth reduction to inhibition of sporulation, zoospore release and even death, although much of these reports are based on experiments performed in controlled laboratory conditions with model plants [5]. Preliminary experiments indicate that these VOCs could also confer protection against oomycete pathogens grown in planta [6]. This presentation will summarize the present state of knowledge in both fields of research, the phyllosphere microbiome and the bacterial emission of VOCs, and highlight the potential these new fields offer for sustainable viticulture.

1. Vorholt JA. 2012. Microbial life in the phyllosphere. Nat Rev Micro 10:828-840. 2. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017-1026. 3. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW. 2003. Bacterial volatiles promote growth in Arabidopsis. P Natl Acad Sci USA 100:4927-4932. 4. Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L. 2014. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80:758-771. 5. Weisskopf L. 2014. The potential of bacterial volatiles for crop protection against phytophathogenic fungi. In Méndez-Vilas A (ed.), Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, online resource. 6. DeVrieze M, Pandey P, Bucheli TD, Varadarajan AR, Ahrens CH, Weisskopf L, Bailly A. 2015. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front Microbiol 6.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Laure Weisskopf*

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.