Macrowine 2021
IVES 9 IVES Conference Series 9 On the losses of dissolved CO2 during champagne aging

On the losses of dissolved CO2 during champagne aging

Abstract

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air (where the partial pressure of gaseous CO2 is only of order of 0,0004 bar). Moreover, because gaseous and dissolved CO2 experience thermodynamic equilibrium in the closed bottle (through the so-called Henry’s law), the level of dissolved CO2 also inevitably decreases as time proceeds during aging on lees. Actually, in champagne tasting, the level of dissolved CO2 is indeed a parameter of paramount importance since it is responsible for the bubbling process (the so-called effervescence). Keeping the dissolved CO2 as long as possible inside the bottle during aging is therefore a challenge of importance for Champagne wine elaborators, especially for old vintages collections likely to age on lees for long periods of time. Here, measurements of dissolved CO2 concentrations were done in a collection of various vintages (from a prestige cuvee provided by our partner), initially holding the same level of CO2 after the “prise de mousse” (classically close to 11.5 g/L), but having experienced different periods of aging on lees (ranging from several months up to 35 years). Progressive losses of dissolved CO2 concentrations were evidenced, depending on the period of time spent in contact with lees. Our results were compared with a previous set of experimental data, and with a multi-parameter model recently developed which provides the level of dissolved CO2 in wine as a function of time. It is worth noting that both the diameter of the bottleneck, and the bottle volume, were found to be key parameters as concerns the losses of dissolved CO2 during champagne aging. Equipe Effervescence (GSMA), Université de Reims, France Laboratoire de Recherches, Champagne Moët & Chandon, Epernay, France

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Gérard Liger-Belair*

*Equipe Effervescence (GSMA)

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.