Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory impacts of the obturator used for the Chasselas: study over the time

Sensory impacts of the obturator used for the Chasselas: study over the time

Abstract

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination. As these methods gain in popularity, assessments of their discriminability and reproducibility in food applications are increasingly needed. Some studies have found that the Napping method could best accentuate qualitative sample differences, whereas the Flash Profile provided a more precise product description on quantitative differences between products. Others projects showed that Flash Profile and conventional profiling are very close in terms of characterisation. In the aim to determine the impact of the obturators on the sensory characteristics of wine, several rapid sensory methods were used. “Rapid methods of sensory profile” like Flash Profile or Napping were done and “classic” discriminative tests like triangular or two-out-of-five tests. The complementarity of these methodologies provide global results on the sensory impacts of the obturators. This project was realized with the panelists of Changins. A total of five degustation was done. The first was done at the bottling (t+0 month) and the following at t+3 months, t+9 months, t+16 months and finally at t+22 months. Four types of obturator were used: a technical obturator, two types of synthetic obturator and a screw capsule. At t+16 months, Napping and Flash Profile have shown a lower variability of organoleptic characteristics between the bottles with the technical obturator and the screw capsule. Finally, the output of these methods were quite similar but the amount of information obtained from each methodology vary. At t+22 months, no significant difference were observed with the discriminative tests between the synthetic obturators and the screw capsule. Additional sensory tests and a largest interval between bottling and tasting could confirm these observations. A study on the relation between the sensory evaluations and analytical analysis of these wines could be pertinent and complementary of the results presented here.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Pierrick Rebenaque*

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Mean polymerization degree of proanthocyanidins of grape seeds, skins and wines from Agiorgitiko (cv. Vitis vinifera): Differences among vintages

Grape phenolic compounds are very important constituents of red wine because, in addition to their antioxidant properties, they contribute to color, astringency and bitterness, oxidation reactions, interactions with proteins and ageing behavior of wines. The aim of our study was to assess the structural characteristics of grape and wine proanthocyanidins of Agiorgitiko variety and to evaluate the influence of the vintage year. Twelve vineyard locations were designated in the Nemea wine region. For three consecutive years (2012-2014), the grapes were harvested at technological maturity and the method of phloroglucinolysis was employed to determine the mean degree of polymerization (mDP) and subunit composition of the samples.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.