Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory impacts of the obturator used for the Chasselas: study over the time

Sensory impacts of the obturator used for the Chasselas: study over the time

Abstract

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination. As these methods gain in popularity, assessments of their discriminability and reproducibility in food applications are increasingly needed. Some studies have found that the Napping method could best accentuate qualitative sample differences, whereas the Flash Profile provided a more precise product description on quantitative differences between products. Others projects showed that Flash Profile and conventional profiling are very close in terms of characterisation. In the aim to determine the impact of the obturators on the sensory characteristics of wine, several rapid sensory methods were used. “Rapid methods of sensory profile” like Flash Profile or Napping were done and “classic” discriminative tests like triangular or two-out-of-five tests. The complementarity of these methodologies provide global results on the sensory impacts of the obturators. This project was realized with the panelists of Changins. A total of five degustation was done. The first was done at the bottling (t+0 month) and the following at t+3 months, t+9 months, t+16 months and finally at t+22 months. Four types of obturator were used: a technical obturator, two types of synthetic obturator and a screw capsule. At t+16 months, Napping and Flash Profile have shown a lower variability of organoleptic characteristics between the bottles with the technical obturator and the screw capsule. Finally, the output of these methods were quite similar but the amount of information obtained from each methodology vary. At t+22 months, no significant difference were observed with the discriminative tests between the synthetic obturators and the screw capsule. Additional sensory tests and a largest interval between bottling and tasting could confirm these observations. A study on the relation between the sensory evaluations and analytical analysis of these wines could be pertinent and complementary of the results presented here.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Pierrick Rebenaque*

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Metabolomic profile of red non-V. vinifera genotypes

Vitis vinifera L. is the most widely cultivated Vitis species which includes numerous cultivars. Owing to their superior quality of grapes, these cultivars were long considered the only suitable for the production of fine wines. However, the lack of resistance genes in V. vinifera against major grapevine pathogens, requires for its cultivation frequent spraying with large amount of fungicides. Thus, the search for alternative and more sustainable methods to control the grapevine pathogens have brought the breeders to focus their attention on other Vitis species. In fact, wild Vitis genotypes present multiple resistance traits against pathogens, such as powdery mildew, downy mildew and phylloxera.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Dissecting the polysaccharide‐rich grape cell wall matrix during the red winemaking process, using high‐throughput and fractionation methods

Limited information is available on grape wall-derived polymeric structure/composition and how this changes during fermentation. Commercial winemaking operations use enzymes that target the polysaccharide-rich polymers of the cell walls of grape tissues to clarify musts and extract pigments during the fermentations. In this study we have assessed changes in polysaccharide composition/ turnover throughout the winemaking process by applying recently developed cell wall profiling approaches to both wine and pomace polysaccharides. The methods included gas chromatography for monosaccharide composition (GC-MS), infra-red (IR) spectroscopy and comprehensive microarray polymer profiling
(CoMPP) using cell wall probes.