Macrowine 2021
IVES 9 IVES Conference Series 9 Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Abstract

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine. Here, we show that based on an assay used in biotechnological analytics, the Amplex Red Assay, a fluorescence method can be developed to quantify H2O2 in wine. The non-fluorescent Amplex Red reagent was catalytically converted into a fluorescent product in presence of H2O2. Wine samples were left to react with oxygen during 30 min before read out. The fluorescence intensity provided quantification of the total integrated production of H2O2 during the measurement period. Within-day as well as between-day variabilities were small (CV < 1%, respectively 1.5%). H2O2 levels were very low in white wines compared to red wines demonstrating the importance of polyphenols. Moreover, H2O2 increased with temperature and the addition of metal ions. By contrast, H2O2 levels did not correlate with the concentration of many common wine constituents such as polyphenols or sulphur dioxide except for polymerized pigments, which played a major role. Furthermore, H2O2 levels were independent of the anti-oxidant properties of the wines. In general, this study demonstrates that the oxidation reactions in wines involve a complex interplay of chemical species that can only be grasped using a holistic approach. We speculate that this novel concept of quantifying the production of intermediates by trapping, using a fluorescent reporter, will open the path to detailed studies aiming at deciphering oxidation mechanisms in wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Jean-Manuel Segura*, Benoit Bach, Julien Ducruet, Julien Héritier, Patrik Schönenberger, Vanessa Gaillard

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.