Macrowine 2021
IVES 9 IVES Conference Series 9 Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Abstract

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine. Here, we show that based on an assay used in biotechnological analytics, the Amplex Red Assay, a fluorescence method can be developed to quantify H2O2 in wine. The non-fluorescent Amplex Red reagent was catalytically converted into a fluorescent product in presence of H2O2. Wine samples were left to react with oxygen during 30 min before read out. The fluorescence intensity provided quantification of the total integrated production of H2O2 during the measurement period. Within-day as well as between-day variabilities were small (CV < 1%, respectively 1.5%). H2O2 levels were very low in white wines compared to red wines demonstrating the importance of polyphenols. Moreover, H2O2 increased with temperature and the addition of metal ions. By contrast, H2O2 levels did not correlate with the concentration of many common wine constituents such as polyphenols or sulphur dioxide except for polymerized pigments, which played a major role. Furthermore, H2O2 levels were independent of the anti-oxidant properties of the wines. In general, this study demonstrates that the oxidation reactions in wines involve a complex interplay of chemical species that can only be grasped using a holistic approach. We speculate that this novel concept of quantifying the production of intermediates by trapping, using a fluorescent reporter, will open the path to detailed studies aiming at deciphering oxidation mechanisms in wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Jean-Manuel Segura*, Benoit Bach, Julien Ducruet, Julien Héritier, Patrik Schönenberger, Vanessa Gaillard

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

Maturation of Agiorgitiko (Vitis vinifera) red wine on its wine lees: Impact on its phenolic composition

Maturation of wine on lees (often referred as sur lie) is a common practice applied by many winemakers around the world. In the past this method was applied mainly on white and/or sparkling wine production but recently also to red wine production. In our experiment, we matured red wine on wine lees of two origins: a) Light wine lees, collected after the completion of the alcoholic fermentation, b) Heavy lees, collected after the completion of the malolactic fermentation. The lees were free of off-odors and were added in the red wine in percentage 3% and 8%, simulating common winemaking addition. The maturation lasted in total six months and samples were collected for analysis after one, three and six months. During storage the lees were stirred.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.