Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Abstract

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization. The lack of reliable tests assessing risk of protein clouding during bottle storage is a recurring problem of winemakers. The methods used to evaluate wine stability involve inducing haze formation (by heat, trichloroacetic acid, and ethanol) and then measuring of turbidity using spectrophotometers, turbidimeters or nephelometers. Currently used test assessing haze potential involves heating which often cause overdosing of fining agent. Moreover, it was shown that the composition of precipitate formed using above mentioned methods was not the same as naturally formed precipitate. A new and reliable method evaluating the haze potential, relevant to natural haze formation is needed. Different tests have been proposed to assess haze formation in wine. Most of these tests are based upon different types of procedures, leading to protein aggregation and precipitation. Heat stability trials, based on heat-induced precipitation, are the most common. These tests are empirical and do not necessarily reflect changes and destabilization phenomena liable to occur in real wine storage conditions. The fact that the same tests, associated with bentonite fining trials, are used to determine the bentonite doses needed to stabilize wines, leads to doses of bentonite much too high and consequently affecting wine quality. Given that the mechanisms underlying haze formation are still not fully understood, the aim of this work was to investigate the feasibility of using Dynamic light scattering (DLS) to understand the occurrence of haze formation, and the implication of wine compounds (protein, polyphenols, polysaccharides). DLS is a non-invasive, well-established technique for measuring the size and size distribution of molecules and particles typically in the submicron region, and with the latest technology lower than 1 nm. DLS directly measures fluctuations in scattering intensity due to Brownian motion, which are analyzed to determine the translational diffusion coefficient Dt and hence an effective measure of molecular size, the hydrodynamic radius Rh. DLS could also provide a rough measure of size distributions in order to assess populations of aggregates, and characterize the colloidal stability of wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Benoit Bach*, Agnieszka Kosinska Cagnazzo, Julien Ducruet, Marc Mathieu, Wilfried Andlauer

*HES-SO

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Use of chitosan as a secondary antioxidant in juices and wines

Chitosan is a polysaccharide produced from the deacetylation of chitin extracted from crustaceous and fungi. In winemaking chitosan is mainly used in the clarification of grape juice and wine, stabilization of white wines, removal of metals and to prevent wine spoilage by undesired microorganisms. The addition of chitosan to model wine systems was able to retard browning, reduce levels of metallic ions (Fe and Cu) and to protect varietal thiols due to its antiradical activity1. The present experiment was planned in order to evaluate the use of chitosan as a secondary antioxidant at three different stages of Sauvignon blanc fermentation and winemaking. Sauvignon blanc juices from three different locations were obtained at a commercial winery in Marlborough, New Zealand. One lots of grapes was collected from a receival bin and pressed into juice with a water-bag press, and a further juice sample was collected from a commercial pressing operation. Chitosan (1 g/L, low molecular weight, 75 – 85% deacetylated) was added to the juice after pressing, after cold settling, after fermentation, or at all these stages. Controls without any chitosan additions were also prepared.

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.