Macrowine 2021
IVES 9 IVES Conference Series 9 Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Abstract

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation. The 3 cultivars are 1) cv. Gamay, which has white flesh over berry development; 2) cv. Gamay de Bouze, which is a somatic mutant of cv. Gamay with white flesh at beginning of berry development and starts to accumulate anthocyanins in the flesh at the onset of fruit ripening; 3) cv. Gamay Fréaux, which is a somatic mutant of cv. Gamay de Bouze with flesh accumulating anthocyanins as early as fruit set. The temporal differences of anthocyanin accumulation of the three cultivars make them a valuable model system to study the interaction between primary and secondary metabolisms in grape berry. Berries of the three cultivars have been sampled at 11 times from fruit set to maturity. Primary metabolites (sugars, organic acids, and 21 free amino acids) and anthocyains have been analyzed, in conjunction with qPCR analysis of key genes involved in anthocyanin biosynthesis. The results showed that hexose concentrations are the same in the fleshes of the three cultivars; however, phenylalanine is much lower in the genotype that accumulates more anthocyanins. The expression of key genes involved in the anthocyanin biosynthesis pathway is in line with anthocyanin accumulation in each cultivar. Enzyme activity analysis also showed that enzymes involved in glycolysis (PGI, PGM) were highest in cv. Gamay Fréaux,and lowest in Gamay, in the same order as anthocyanin concentration. These results provide clues to modulate the balance between primary and secondary metabolites in grape berry. Acknowledgement: This work is partly supported by a grant from FR BIE “Biologie Intégrative et Ecologie” at Bordeaux University to ZD and YG.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhanwu Dai*, Christel Renaud, Eric Gomes, Ghislaine Hilbert, Jing Wu, Messa Meddar, Patricia Ballias, Serge Delrot, Yves Gibon

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

Attractiveness and sweetness of red wines: Synergies between American oak barrels and mannoproteins

In partnership with a Bordeaux property wanting to improve the quality of its second wine, the effects of two factors, American oak barrels and mannoproteins were studied. Their impact on the attractiveness and sweetness of wines were characterized during two successive vintages (2012 and 2013). Vinification took place with a homogeneous batch of Cabernet Sauvignon. The wine was then divided up into various groups of five barrels of French and American oak, new or reused. Analyses of volatile and non-volatile wood compounds were undertaken at four months and eight months of wood ageing, by LC-MS and GC-MS.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Using combinations of recombinant pectinases to elucidate the deconstruction of the polysaccharide‐rich grape cell wall during winemaking

The effectiveness of enzyme-mediated maceration processes in red winemaking relies on a clear picture of the target (berry cell wall structure) to achieve the optimum combination of specific enzymes to be used. However, we lack the information on both essential factors of the reaction (i.e. specific activities in commercial enzyme preparation and the cell wall structure of berry tissue). In this study, the different combinations of pure recombinant enzymes and the recently validated high throughput cell wall profiling tools were applied to extend our knowledge on the grape berry cell wall polymeric deconstruction during the winemaking following a combinatorial enzyme treatment design.