Macrowine 2021
IVES 9 IVES Conference Series 9 Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Abstract

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation. The 3 cultivars are 1) cv. Gamay, which has white flesh over berry development; 2) cv. Gamay de Bouze, which is a somatic mutant of cv. Gamay with white flesh at beginning of berry development and starts to accumulate anthocyanins in the flesh at the onset of fruit ripening; 3) cv. Gamay Fréaux, which is a somatic mutant of cv. Gamay de Bouze with flesh accumulating anthocyanins as early as fruit set. The temporal differences of anthocyanin accumulation of the three cultivars make them a valuable model system to study the interaction between primary and secondary metabolisms in grape berry. Berries of the three cultivars have been sampled at 11 times from fruit set to maturity. Primary metabolites (sugars, organic acids, and 21 free amino acids) and anthocyains have been analyzed, in conjunction with qPCR analysis of key genes involved in anthocyanin biosynthesis. The results showed that hexose concentrations are the same in the fleshes of the three cultivars; however, phenylalanine is much lower in the genotype that accumulates more anthocyanins. The expression of key genes involved in the anthocyanin biosynthesis pathway is in line with anthocyanin accumulation in each cultivar. Enzyme activity analysis also showed that enzymes involved in glycolysis (PGI, PGM) were highest in cv. Gamay Fréaux,and lowest in Gamay, in the same order as anthocyanin concentration. These results provide clues to modulate the balance between primary and secondary metabolites in grape berry. Acknowledgement: This work is partly supported by a grant from FR BIE “Biologie Intégrative et Ecologie” at Bordeaux University to ZD and YG.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhanwu Dai*, Christel Renaud, Eric Gomes, Ghislaine Hilbert, Jing Wu, Messa Meddar, Patricia Ballias, Serge Delrot, Yves Gibon

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Chemical markers in wine related to low levels of yeast available nitrogen in the grape

Nitrogen is an important nutrient of yeast and its low content in grape must is a major cause for sluggish fermentations. To prevent problems during fermentation, a supplementation of the must with ammonium salts or more complex nitrogen mixtures is practiced in the cellar. However this correction seems to improve only partially the quality of wine [1]. In fact, yeast is using nitrogen in many of its metabolic pathways and depending of the sort of the nitrogen source (ammonium or amino acids) it produces different flavor active compounds. A limitation in amino acids can lead to a change in the metabolic pathways of yeast and consequently alter wine quality.

Effect of malolactic fermentation in barrels or stainless steel tanks on wine composition. Influence of the barrel toasting

Ellagitannin, anthocyanin and woody volatile composition of Cabernet Sauvignon wines aged in oak barrels for 12 months was evaluated. Depending on the container where malolactic fermentation (MLF) was carried out, two wine modalities were investigated: wines with MLF carried out in stainless steel tanks and barrel-fermented wines. Three toasting methods (medium toast, MT; medium toast with watering, MTAA; noisette) were considered for ageing of each wine modality. Sensory analyses (triangle and rating tests) were also performed. Two-way ANOVA of the raw experimental data revealed that the toasting method and the container where MLF took place, as well as the interaction between both factors, have a significant influence (p < 0.05) on ellagitannin, anthocyanin and woody volatile profiles of Cabernet Sauvignon wines.

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.