Macrowine 2021
IVES 9 IVES Conference Series 9 Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Abstract

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation. The 3 cultivars are 1) cv. Gamay, which has white flesh over berry development; 2) cv. Gamay de Bouze, which is a somatic mutant of cv. Gamay with white flesh at beginning of berry development and starts to accumulate anthocyanins in the flesh at the onset of fruit ripening; 3) cv. Gamay Fréaux, which is a somatic mutant of cv. Gamay de Bouze with flesh accumulating anthocyanins as early as fruit set. The temporal differences of anthocyanin accumulation of the three cultivars make them a valuable model system to study the interaction between primary and secondary metabolisms in grape berry. Berries of the three cultivars have been sampled at 11 times from fruit set to maturity. Primary metabolites (sugars, organic acids, and 21 free amino acids) and anthocyains have been analyzed, in conjunction with qPCR analysis of key genes involved in anthocyanin biosynthesis. The results showed that hexose concentrations are the same in the fleshes of the three cultivars; however, phenylalanine is much lower in the genotype that accumulates more anthocyanins. The expression of key genes involved in the anthocyanin biosynthesis pathway is in line with anthocyanin accumulation in each cultivar. Enzyme activity analysis also showed that enzymes involved in glycolysis (PGI, PGM) were highest in cv. Gamay Fréaux,and lowest in Gamay, in the same order as anthocyanin concentration. These results provide clues to modulate the balance between primary and secondary metabolites in grape berry. Acknowledgement: This work is partly supported by a grant from FR BIE “Biologie Intégrative et Ecologie” at Bordeaux University to ZD and YG.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Zhanwu Dai*, Christel Renaud, Eric Gomes, Ghislaine Hilbert, Jing Wu, Messa Meddar, Patricia Ballias, Serge Delrot, Yves Gibon

*INRA

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Impact of some agronomic practices on grape skins anthocyanin content

Wine colour is the first quality characteristic to be assessed, especially regarding red wines. Anthocyanins are very well known to be the main responsible compounds for red wine colour. Red cultivars can synthesize and accumulate anthocyanins in berry skin to express their colour. However, anthocyanin accumulation is often influenced by a series of factors, such as genetic regulation, phytohormones, environmental conditions and viticultural management.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.