Macrowine 2021
IVES 9 IVES Conference Series 9 DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Abstract

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain. While the former leads to barrels with less aromas and more tannins, often oriented to alcohols, the later is more aromatic and convenient for wine ageing. Does the traditional cooper grading by grain have a link with species in the chemical expression of oak? A protocol has been built to monitor the effect of the two species from the tree to the barrel, and the wine aged in them. In this study the first results observed during the yard seasoning are presented. Several oak trees from the same plot in the Forêt Domaniale de Saint Palais, France were studied. Recent developments of DNA tests can identify oak species or hybrid (instead of morphological determination that can be approximate). DNA tests were performed on each tree to identify their species. After excluding hybrids, only pure sessile oak and pure pedunculate oak were considered and separated into two batches. Staves were split from each oak batch, classified according to their type of grain and put in the yard for 24 months of seasoning. Chemical, sensory and also wood microflora analyses have been made at the beginning (T0), after 6 months (T6), after 12 months (T12) and after 18 months (T18) of seasoning. Among the sessile oak, two groups can be distinguished. The former is extremely rich in lactones whereas the later is poorer and can be considered as a “neighbor” of pedunculate oak that is poor in lactones but richer in tannins. Pedunculate oak is homogeneous whether its grain is tight or wide. Sessile oak seems to be impacted by the type of grain. The richer group is related to only thin grain while the poorer is made of mainly wide grain. Tastings on oak shavings showed that sessile oak has spicy, fresh and pastry aromas whereas pedunculate oak was acetic. Moreoever the later showed a more important and varied microflora. These first three steps of the yard seasoning have shown that the grain have a true effect on the aromatic composition of sessile oak. Are these differences kept along yard seasoning, barrel making and wine ageing?

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Marie Mirabel*, Rémi Teissier du Cros, Vincent Renouf

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Capture depletion of grapevine DNA: an approach to advance the study of microbial community in wine

The use of next-generation sequencing (NGS) has helped understand microbial genetics in oenology. Current studies mainly focus on barcoded amplicon NGS but not shotgun sequencing, which is useful for functional analyses. Since the high percentage of grapevine DNA conceals the microbial DNA in must, the majority of sequencing data is wasted in bioinformatic analyses. Here we present capture depletion of grapevine whole genome DNA.

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.