Macrowine 2021
IVES 9 IVES Conference Series 9 DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Abstract

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain. While the former leads to barrels with less aromas and more tannins, often oriented to alcohols, the later is more aromatic and convenient for wine ageing. Does the traditional cooper grading by grain have a link with species in the chemical expression of oak? A protocol has been built to monitor the effect of the two species from the tree to the barrel, and the wine aged in them. In this study the first results observed during the yard seasoning are presented. Several oak trees from the same plot in the Forêt Domaniale de Saint Palais, France were studied. Recent developments of DNA tests can identify oak species or hybrid (instead of morphological determination that can be approximate). DNA tests were performed on each tree to identify their species. After excluding hybrids, only pure sessile oak and pure pedunculate oak were considered and separated into two batches. Staves were split from each oak batch, classified according to their type of grain and put in the yard for 24 months of seasoning. Chemical, sensory and also wood microflora analyses have been made at the beginning (T0), after 6 months (T6), after 12 months (T12) and after 18 months (T18) of seasoning. Among the sessile oak, two groups can be distinguished. The former is extremely rich in lactones whereas the later is poorer and can be considered as a “neighbor” of pedunculate oak that is poor in lactones but richer in tannins. Pedunculate oak is homogeneous whether its grain is tight or wide. Sessile oak seems to be impacted by the type of grain. The richer group is related to only thin grain while the poorer is made of mainly wide grain. Tastings on oak shavings showed that sessile oak has spicy, fresh and pastry aromas whereas pedunculate oak was acetic. Moreoever the later showed a more important and varied microflora. These first three steps of the yard seasoning have shown that the grain have a true effect on the aromatic composition of sessile oak. Are these differences kept along yard seasoning, barrel making and wine ageing?

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Marie Mirabel*, Rémi Teissier du Cros, Vincent Renouf

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.