Macrowine 2021
IVES 9 IVES Conference Series 9 DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Abstract

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain. While the former leads to barrels with less aromas and more tannins, often oriented to alcohols, the later is more aromatic and convenient for wine ageing. Does the traditional cooper grading by grain have a link with species in the chemical expression of oak? A protocol has been built to monitor the effect of the two species from the tree to the barrel, and the wine aged in them. In this study the first results observed during the yard seasoning are presented. Several oak trees from the same plot in the Forêt Domaniale de Saint Palais, France were studied. Recent developments of DNA tests can identify oak species or hybrid (instead of morphological determination that can be approximate). DNA tests were performed on each tree to identify their species. After excluding hybrids, only pure sessile oak and pure pedunculate oak were considered and separated into two batches. Staves were split from each oak batch, classified according to their type of grain and put in the yard for 24 months of seasoning. Chemical, sensory and also wood microflora analyses have been made at the beginning (T0), after 6 months (T6), after 12 months (T12) and after 18 months (T18) of seasoning. Among the sessile oak, two groups can be distinguished. The former is extremely rich in lactones whereas the later is poorer and can be considered as a “neighbor” of pedunculate oak that is poor in lactones but richer in tannins. Pedunculate oak is homogeneous whether its grain is tight or wide. Sessile oak seems to be impacted by the type of grain. The richer group is related to only thin grain while the poorer is made of mainly wide grain. Tastings on oak shavings showed that sessile oak has spicy, fresh and pastry aromas whereas pedunculate oak was acetic. Moreoever the later showed a more important and varied microflora. These first three steps of the yard seasoning have shown that the grain have a true effect on the aromatic composition of sessile oak. Are these differences kept along yard seasoning, barrel making and wine ageing?

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Marie Mirabel*, Rémi Teissier du Cros, Vincent Renouf

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Ageing of sweet wines: oxygen evolution according to bung and barrel type

Barrel ageing is a crucial step in the wine process because it allows many changes to the wine as enrichment, colour stabilization, clarification and also a slow oxygenation. Effects of the oak barrel have to be known to prevent oxidation of the wine. The type of bung used during ageing is also a parameter to consider. Ageing sweet wines in barrel is a real challenge. These wines may need some oxygen at the beginning of ageing but they should be protected at the end of their maturation, to avoid oxidation.

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.