Macrowine 2021
IVES 9 IVES Conference Series 9 DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Abstract

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain. While the former leads to barrels with less aromas and more tannins, often oriented to alcohols, the later is more aromatic and convenient for wine ageing. Does the traditional cooper grading by grain have a link with species in the chemical expression of oak? A protocol has been built to monitor the effect of the two species from the tree to the barrel, and the wine aged in them. In this study the first results observed during the yard seasoning are presented. Several oak trees from the same plot in the Forêt Domaniale de Saint Palais, France were studied. Recent developments of DNA tests can identify oak species or hybrid (instead of morphological determination that can be approximate). DNA tests were performed on each tree to identify their species. After excluding hybrids, only pure sessile oak and pure pedunculate oak were considered and separated into two batches. Staves were split from each oak batch, classified according to their type of grain and put in the yard for 24 months of seasoning. Chemical, sensory and also wood microflora analyses have been made at the beginning (T0), after 6 months (T6), after 12 months (T12) and after 18 months (T18) of seasoning. Among the sessile oak, two groups can be distinguished. The former is extremely rich in lactones whereas the later is poorer and can be considered as a “neighbor” of pedunculate oak that is poor in lactones but richer in tannins. Pedunculate oak is homogeneous whether its grain is tight or wide. Sessile oak seems to be impacted by the type of grain. The richer group is related to only thin grain while the poorer is made of mainly wide grain. Tastings on oak shavings showed that sessile oak has spicy, fresh and pastry aromas whereas pedunculate oak was acetic. Moreoever the later showed a more important and varied microflora. These first three steps of the yard seasoning have shown that the grain have a true effect on the aromatic composition of sessile oak. Are these differences kept along yard seasoning, barrel making and wine ageing?

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Marie Mirabel*, Rémi Teissier du Cros, Vincent Renouf

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Enological evaluation of the attitude of the grapevine fumin to give varietal wines

Initiatives have been ongoing in recent years to safeguard biodiversity in the oenological sector via a process of enhancement of ancient varieties, under a pressure of a market strongly oriented towards production deriving from native vines of specific geographical zones. In that sense, Aosta Valley
(Italy) has raised the need to preserve and characterize its minority vine varieties which have the potentiality to give varietal wines. Fumin represents the 7% of the production of the region with 16 hectares of vineyards and 753 hectolitres of derived wine. Due to its large phenolic potential, strong astringency and deep colour, it has long been, and is still today, assembled or blended with other varieties as occurs, for example, for the Torrette.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.