Macrowine 2021
IVES 9 IVES Conference Series 9 DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Abstract

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain. While the former leads to barrels with less aromas and more tannins, often oriented to alcohols, the later is more aromatic and convenient for wine ageing. Does the traditional cooper grading by grain have a link with species in the chemical expression of oak? A protocol has been built to monitor the effect of the two species from the tree to the barrel, and the wine aged in them. In this study the first results observed during the yard seasoning are presented. Several oak trees from the same plot in the Forêt Domaniale de Saint Palais, France were studied. Recent developments of DNA tests can identify oak species or hybrid (instead of morphological determination that can be approximate). DNA tests were performed on each tree to identify their species. After excluding hybrids, only pure sessile oak and pure pedunculate oak were considered and separated into two batches. Staves were split from each oak batch, classified according to their type of grain and put in the yard for 24 months of seasoning. Chemical, sensory and also wood microflora analyses have been made at the beginning (T0), after 6 months (T6), after 12 months (T12) and after 18 months (T18) of seasoning. Among the sessile oak, two groups can be distinguished. The former is extremely rich in lactones whereas the later is poorer and can be considered as a “neighbor” of pedunculate oak that is poor in lactones but richer in tannins. Pedunculate oak is homogeneous whether its grain is tight or wide. Sessile oak seems to be impacted by the type of grain. The richer group is related to only thin grain while the poorer is made of mainly wide grain. Tastings on oak shavings showed that sessile oak has spicy, fresh and pastry aromas whereas pedunculate oak was acetic. Moreoever the later showed a more important and varied microflora. These first three steps of the yard seasoning have shown that the grain have a true effect on the aromatic composition of sessile oak. Are these differences kept along yard seasoning, barrel making and wine ageing?

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Marie Mirabel*, Rémi Teissier du Cros, Vincent Renouf

*Chêne & Cie

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effect of non-Saccharomyces yeast and lactic acid bacteria on selected sensory attributes and polyphenols of Syrah wines

Consumers predominantly use visual, aromatic and texture cues as quality/preference indicators to describe olfactory sensations. In this study, the effect of micro-organism in wine production was investigated using analytical and sensory techniques to achieve relevant analytical characterisation. Selected anthocyanins, flavan-3-ols, flavonols and phenolic acids were quantified in Syrah wines using RP-HPLC-DAD. Standard oenological parameters were also measured. Syrah grape must was fermented with various combinations of Saccharomyces cerevisiae (S. cerevisiae) and non-Saccharomyces (Metschnikowia pulcherrima or Hanseniaspora uvarum) yeasts, which was followed by sequential inoculation of lactic acid bacteria (LAB) (Oenococcus oeni or Lactobacillus plantarum).

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.