Macrowine 2021
IVES 9 IVES Conference Series 9 Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Abstract

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins. Furthermore, the possible existence of synergism on astringency between phenolic substances (4) has recently arisen. Salivary proteins have been grouped in six main classes: histatins, statherin, cystatins, and proline-rich proteins (acidic, basic and glycosylated) (5). The possible existence of selective interactions between different types of wine phenolic compounds and different salivary protein classes could be responsible for the observed synergisms. To obtain further insights into the interactions between these compounds and salivary proteins that could explain the synergistic effect observed, we have studied the interactions between flavanols and salivary proteins by quenching of fluorescence and HPLC-DAD. Quenching constants calculated and chromatographic profiles obtained could partially explain the synergisms observed in the sensory evaluation of wine phenolic compounds. Furthermore, the effect of the presence of other molecular species, in particular anthocyanins, in the interactions between flavanols and salivary proteins has also been studied. Results obtained confirm the existence of interactions between anthocyanins and salivary proteins which could hinder the interaction between flavanols and salivary proteins, affecting the perceived astringency.

References 1. Gawel, R.; Iland, P. G.; Francis, I. L. Food Quality and Preference 2001, 12, 83-94. 2. de Freitas, V.; Mateus, N. Current Organic Chemistry 2012, 16, 724-746. 3. Scollary, G. R.; Pasti, G.; Kallay, M.; Blackman, J.; Clark, A. C. Trends in Food Science & Technology 2012, 27, 25-36. 4. Ferrer-Gallego, R.; Henández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Food Research International 2014, 62, 1100-1107 (). 5. Humphrey, S. P.; Williamson, R. T. Journal of Prosthetic Dentistry 2001, 85, 162-169. Acknowledgement Thanks are due to Spanish MINECO for financial support (AGL2014-58486-C2-1-R)

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Escribano-Bailon*, Alba Ramos-Pineda, Cristina Alcalde-Eon, Ignacio García Estévez, Julian Rivas-Gonzalo, Monserrat Dueñas

*University of Salamanca

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Effects of bottle closure type on sensory characteristics of Chasselas wines

Several winemaking operations, such as filtration, pumping, and racking, are known to potentially facilitate the incorporation of atmospheric O2 into the wine. Control of grape must oxidation is one key aspect in the management of white wine aroma expression, color stability and shelf-life extension. On the one hand, controlled must oxidation may help to remove highly reactive phenolic compounds, which otherwise could contribute to premature oxidation. And on the other hand, in certain cases of extreme protection of the must from O2 (e.g. pressing under inert atmosphere), it can help to preserve varietal aromas and natural must antioxidants.