Macrowine 2021
IVES 9 IVES Conference Series 9 Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Abstract

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins. Furthermore, the possible existence of synergism on astringency between phenolic substances (4) has recently arisen. Salivary proteins have been grouped in six main classes: histatins, statherin, cystatins, and proline-rich proteins (acidic, basic and glycosylated) (5). The possible existence of selective interactions between different types of wine phenolic compounds and different salivary protein classes could be responsible for the observed synergisms. To obtain further insights into the interactions between these compounds and salivary proteins that could explain the synergistic effect observed, we have studied the interactions between flavanols and salivary proteins by quenching of fluorescence and HPLC-DAD. Quenching constants calculated and chromatographic profiles obtained could partially explain the synergisms observed in the sensory evaluation of wine phenolic compounds. Furthermore, the effect of the presence of other molecular species, in particular anthocyanins, in the interactions between flavanols and salivary proteins has also been studied. Results obtained confirm the existence of interactions between anthocyanins and salivary proteins which could hinder the interaction between flavanols and salivary proteins, affecting the perceived astringency.

References 1. Gawel, R.; Iland, P. G.; Francis, I. L. Food Quality and Preference 2001, 12, 83-94. 2. de Freitas, V.; Mateus, N. Current Organic Chemistry 2012, 16, 724-746. 3. Scollary, G. R.; Pasti, G.; Kallay, M.; Blackman, J.; Clark, A. C. Trends in Food Science & Technology 2012, 27, 25-36. 4. Ferrer-Gallego, R.; Henández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Food Research International 2014, 62, 1100-1107 (). 5. Humphrey, S. P.; Williamson, R. T. Journal of Prosthetic Dentistry 2001, 85, 162-169. Acknowledgement Thanks are due to Spanish MINECO for financial support (AGL2014-58486-C2-1-R)

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Escribano-Bailon*, Alba Ramos-Pineda, Cristina Alcalde-Eon, Ignacio García Estévez, Julian Rivas-Gonzalo, Monserrat Dueñas

*University of Salamanca

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Micro-meteorological, compositional and transcriptional study of corvina grape color during ripening

Grape anthocyanin content and composition could affect the quality and the production strategies of red wines. Differences in the pigment composition modify the color properties in terms of hue, extractability and stability. Thus, for the production of a highly qualitative wine such as “Amarone”, variations in the pigment composition are not negligible. The aim of this work was the investigation of the anthocyanin profile changes during ripening in Corvina grapes, the main cultivar for the “Amarone” production. The experiment took place in 2015, in two vineyards located in Valpollicella (Italy).

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Estimation of chemical age of red wines with the use of Fourier transform infrared spectroscopy (FT-IR) and chemometrics

The color of a red wine is one of the most important parameters of its quality, giving much information on its status, such as the grape variety used or the winemaking style. As the result of a complex equilibrium between different forms of anthocyanins and polymerization reactions which occur over the course of time, color can also serve as an indication of a wines’ age. For this purpose the “chemical age” i and ii indexes have been introduced by Somers in 1977. The chemical age index i measures the color absorbance after the addition of acetaldehyde while chemical index ii provides an indication of how much of the total red pigments are resistant to SO2 bleaching.