Macrowine 2021
IVES 9 IVES Conference Series 9 Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Abstract

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins. Furthermore, the possible existence of synergism on astringency between phenolic substances (4) has recently arisen. Salivary proteins have been grouped in six main classes: histatins, statherin, cystatins, and proline-rich proteins (acidic, basic and glycosylated) (5). The possible existence of selective interactions between different types of wine phenolic compounds and different salivary protein classes could be responsible for the observed synergisms. To obtain further insights into the interactions between these compounds and salivary proteins that could explain the synergistic effect observed, we have studied the interactions between flavanols and salivary proteins by quenching of fluorescence and HPLC-DAD. Quenching constants calculated and chromatographic profiles obtained could partially explain the synergisms observed in the sensory evaluation of wine phenolic compounds. Furthermore, the effect of the presence of other molecular species, in particular anthocyanins, in the interactions between flavanols and salivary proteins has also been studied. Results obtained confirm the existence of interactions between anthocyanins and salivary proteins which could hinder the interaction between flavanols and salivary proteins, affecting the perceived astringency.

References 1. Gawel, R.; Iland, P. G.; Francis, I. L. Food Quality and Preference 2001, 12, 83-94. 2. de Freitas, V.; Mateus, N. Current Organic Chemistry 2012, 16, 724-746. 3. Scollary, G. R.; Pasti, G.; Kallay, M.; Blackman, J.; Clark, A. C. Trends in Food Science & Technology 2012, 27, 25-36. 4. Ferrer-Gallego, R.; Henández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Food Research International 2014, 62, 1100-1107 (). 5. Humphrey, S. P.; Williamson, R. T. Journal of Prosthetic Dentistry 2001, 85, 162-169. Acknowledgement Thanks are due to Spanish MINECO for financial support (AGL2014-58486-C2-1-R)

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Escribano-Bailon*, Alba Ramos-Pineda, Cristina Alcalde-Eon, Ignacio García Estévez, Julian Rivas-Gonzalo, Monserrat Dueñas

*University of Salamanca

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Use of glutathione under different grape processing and winemaking conditions and its impact on the formation of sulfide off-flavors, colour, and sensory characteristics of Riesling, Sauvignon blanc, and Chardonnay

The use of glutathione (GSH) in winemaking has been legitimated recently, according to OIV resolutions OENO 445-2015 and OENO 446-2015 a maximum dose of 20 mg/L is now allowed to use in must and wine. Several studies have proven the benefits of GSH, predominantly in Sauvignon blanc. Thus, oxidative coloration of must and wine is limited, aroma compounds such as volatile thiols are preserved, and the development of ageing flavors such as sotolon and 2-aminoacetophenone is impeded. The protective effect may be explained by the high affinity of GSH to bind o-quinones which are formed during phenolic oxidation and which are known to initiate browning and other oxidative changes. Some researchers have proposed the hydroxycinnamic acid to GSH ratio (HGR) as an indicator of oxidation susceptibility of must and could show that lower ratios yielded lighter musts.

Oxygen consumption by diferent oenological tanins in a model wine solution

INTRODUCTION: Oenological tannins are widely used in winemaking to improve some characteristics of wines [1] being the antioxidant properties probably one of the main reasons [2]. However, commercial tannins have different botanical sources and chemical composition [3] which probably determines different antioxidant potential. There are some few references about the antioxidant properties of commercial tannins [4] but none of them have really measured the direct oxygen consumption by them. The aim of this work was to measure the kinetics of oxygen consumption by different commercial tannins in order to determine their real capacities to protect wine against oxygen. MATERIAL AND METHODS: 4 different commercial tannins were used: T1: condensed tannin from grape seeds, T2: gallotannin from chinese gallnuts, T3: ellagitannin from oak and T4: tannin from quebracho containing condensed tannins and ellagitannins.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.