Macrowine 2021
IVES 9 IVES Conference Series 9 Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

Abstract

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins. Furthermore, the possible existence of synergism on astringency between phenolic substances (4) has recently arisen. Salivary proteins have been grouped in six main classes: histatins, statherin, cystatins, and proline-rich proteins (acidic, basic and glycosylated) (5). The possible existence of selective interactions between different types of wine phenolic compounds and different salivary protein classes could be responsible for the observed synergisms. To obtain further insights into the interactions between these compounds and salivary proteins that could explain the synergistic effect observed, we have studied the interactions between flavanols and salivary proteins by quenching of fluorescence and HPLC-DAD. Quenching constants calculated and chromatographic profiles obtained could partially explain the synergisms observed in the sensory evaluation of wine phenolic compounds. Furthermore, the effect of the presence of other molecular species, in particular anthocyanins, in the interactions between flavanols and salivary proteins has also been studied. Results obtained confirm the existence of interactions between anthocyanins and salivary proteins which could hinder the interaction between flavanols and salivary proteins, affecting the perceived astringency.

References 1. Gawel, R.; Iland, P. G.; Francis, I. L. Food Quality and Preference 2001, 12, 83-94. 2. de Freitas, V.; Mateus, N. Current Organic Chemistry 2012, 16, 724-746. 3. Scollary, G. R.; Pasti, G.; Kallay, M.; Blackman, J.; Clark, A. C. Trends in Food Science & Technology 2012, 27, 25-36. 4. Ferrer-Gallego, R.; Henández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Food Research International 2014, 62, 1100-1107 (). 5. Humphrey, S. P.; Williamson, R. T. Journal of Prosthetic Dentistry 2001, 85, 162-169. Acknowledgement Thanks are due to Spanish MINECO for financial support (AGL2014-58486-C2-1-R)

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Teresa Escribano-Bailon*, Alba Ramos-Pineda, Cristina Alcalde-Eon, Ignacio García Estévez, Julian Rivas-Gonzalo, Monserrat Dueñas

*University of Salamanca

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.