GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Abstract

Context and purpose of the study ‐ Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops. Agriculture is now mandated by the State of California to monitor all possible nitrogen (N) inputs into agro‐ecosystems and only apply N amounts that meet a crop’s demand. The best estimate of N required for the current season’s growth of shoots and fruit in raisin, table and wine grape vineyards in the San Joaquin Valley is approximately 70 to 80 kg N ha‐1 (values derived from Thompson Seedless and several wine grape cultivars). The table grape industry continues to develop new cultivars and replanting vineyards using open‐gable trellis systems which will produce greater vegetative biomass and fruit yields. One objective of this study was to determine the N budget of several established and newer table grape cultivars trained to overhead trellises, grown in the San Joaquin Valley.

Materials and Methods – Flame Seedless, Scarlet Royal, Crimson Seedless, Princess, Sheegene‐21 and Autumn King grapevines grown at eight commercial vineyards within 30 km of the KARE Center were used in the study. N fertilizer was applied in three of the vineyards, the amount being that removed in the fruit at harvest and twice that. The control vines received no applied N. Petioles were collected at bloom and veraison to assess vine N status. Shoots and clusters were removed from data vines in each vineyard at bloom, veraison and fruit harvest, biomass and N concentrations determined and N budgets developed in each vineyard.

Results ‐ Petiole nitrate‐N at bloom and veraison were significantly correlated with petiole ammonia‐N and total N measured at the same stage and total N in the leaves, stems and fruit at bloom, veraison and harvest. Values of petiole nitrate‐N below 200 ppm (dry weight basis) at bloom in the current season resulted in fewer clusters produced by the vines the following year. Yield of Flame Seedless, Scarlet Royal and Crimson Seedless averaged across treatments and years was 55, 67 and 53 t/ha, respectively. The amount of N per ton of fruit ranged from 0.98 to 1.85 kg. The amount of N accumulated by vines at harvest in the leaves, stems and clusters ranged from 131 to 210 kg/ha. The amount of N in the fruit (kg/t) was dependent upon location and somewhat correlated with petiole analyses at bloom and veraison.The amount of N to produce a crop was a function of location, row spacing and supply of N from the irrigation water and soil profile. The N required by the vines in these table grape vineyards were much greater than earlier estimates.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Larry E. WILLIAMS and Matthew FEDELIBUS

Department of Viticulture and Enology University of California – Davis and
Kearney Agricultural Research and Extension (KARE) Center 9240 S. Riverbend Avenue
Parlier, CA 93648

Contact the author

Keywords

 table grapes, N nutrition, N budget

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Évaluation environnementale de pratiques vitivinicoles innovantes

The Institut Français De La Vigne Et Du Vin (IFV) is conducting many experiments on innovative winegrowing practices, which are emerging in companies in the sector, or which are still at the R&D stage for agricultural suppliers. The purpose of these practices may be to reduce environmental impact, to adapt vineyards to climate change, or to achieve other technical, economic or social aims. Whatever the objective, it is necessary to verify the relevance of these new practices, and in particular their environmental relevance, i.e. That at the very least, the changes in practices do not increase the environmental impact of the technical itineraries.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Applications of a novel molecular phenology scale to align the stages of grape berry development

Phenology scales widely adopted by viticulturists (i.e., BBCH or modified E-L systems) are classification tools that describe seasonal and precisely recognized stages of fruit growth and development based on specific descriptors such as visual/physical traits or easy-to-measure compositional parameters.

The use of elicitors in the vineyard to mitigate the effects of climate change on wine quality

The wine sector is being directly affected by climate change. Temperatures above 30ºC can cause a lag between the ripening of the berry pulp (a rapid increase in sugar content) and the skin

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]).