GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Nitrogen requirements of table grape cultivars grown in the san Joaquin valley of California

Abstract

Context and purpose of the study ‐ Ground water in the interior valleys of California is contaminated with nitrates derived from agricultural activities, primarily the over-fertilization of crops. Agriculture is now mandated by the State of California to monitor all possible nitrogen (N) inputs into agro‐ecosystems and only apply N amounts that meet a crop’s demand. The best estimate of N required for the current season’s growth of shoots and fruit in raisin, table and wine grape vineyards in the San Joaquin Valley is approximately 70 to 80 kg N ha‐1 (values derived from Thompson Seedless and several wine grape cultivars). The table grape industry continues to develop new cultivars and replanting vineyards using open‐gable trellis systems which will produce greater vegetative biomass and fruit yields. One objective of this study was to determine the N budget of several established and newer table grape cultivars trained to overhead trellises, grown in the San Joaquin Valley.

Materials and Methods – Flame Seedless, Scarlet Royal, Crimson Seedless, Princess, Sheegene‐21 and Autumn King grapevines grown at eight commercial vineyards within 30 km of the KARE Center were used in the study. N fertilizer was applied in three of the vineyards, the amount being that removed in the fruit at harvest and twice that. The control vines received no applied N. Petioles were collected at bloom and veraison to assess vine N status. Shoots and clusters were removed from data vines in each vineyard at bloom, veraison and fruit harvest, biomass and N concentrations determined and N budgets developed in each vineyard.

Results ‐ Petiole nitrate‐N at bloom and veraison were significantly correlated with petiole ammonia‐N and total N measured at the same stage and total N in the leaves, stems and fruit at bloom, veraison and harvest. Values of petiole nitrate‐N below 200 ppm (dry weight basis) at bloom in the current season resulted in fewer clusters produced by the vines the following year. Yield of Flame Seedless, Scarlet Royal and Crimson Seedless averaged across treatments and years was 55, 67 and 53 t/ha, respectively. The amount of N per ton of fruit ranged from 0.98 to 1.85 kg. The amount of N accumulated by vines at harvest in the leaves, stems and clusters ranged from 131 to 210 kg/ha. The amount of N in the fruit (kg/t) was dependent upon location and somewhat correlated with petiole analyses at bloom and veraison.The amount of N to produce a crop was a function of location, row spacing and supply of N from the irrigation water and soil profile. The N required by the vines in these table grape vineyards were much greater than earlier estimates.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Larry E. WILLIAMS and Matthew FEDELIBUS

Department of Viticulture and Enology University of California – Davis and
Kearney Agricultural Research and Extension (KARE) Center 9240 S. Riverbend Avenue
Parlier, CA 93648

Contact the author

Keywords

 table grapes, N nutrition, N budget

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

LARGE-SCALE PHENOTYPIC SCREENING OF THE SPOILAGE YEAST BRETTANOMYCES BRUXELLENSIS: UNTANGLING PATTERNS OF ADAPTATION AND SELECTION, AND CONSEQUENCES FOR INNOVATIVE WINE TREATMENTS

Brettanomyces bruxellensis is considered as the main spoilage yeast in oenology. Its presence in red wine leads to off-flavour due to the production of volatile phenols such as 4-vinylphenol, 4-vinylguaiacol, 4-ethylphenol and 4-ethylguaiacol, whose aromatic notes are unpleasant (e.g. animal, leather, horse or pharmaceutical). Beside wine, B. bruxellensis is commonly isolated from beer, kombucha and bioethanol production, where its role can be described as negative or positive. Recent genomic studies unveiled the existence of various populations.

“Gentle” sustainable extraction from whole berry by using resonance waves and slight over CO2 overpressure

The traditional methods of grape extraction of enochemical compounds use very often mechanical energy by pistons such as the pigeage or mechanical energy produced by must (delestage, pumping over). Recent trend by winemaker is trying to introduce in the fermentation tank, whole berry grape to avoid even minimal oxidation. Unfortunately, the use of the traditional mechanical techniques aforementioned, very often do not guarantee the optimal extraction with residual sugars in the marc. Use of resonance waves (airmixingtm) and a slight overpressure by CO2 (adcftm) permit to work on whole berry guaranteeing the perfect extraction.

Green berries on Gewürztraminer (Vitis vinifera L.) in South Tyrol (Italy)

The grape variety Gewürztraminer is known to be affected by two physiological disorders namely berry shrivel and bunch stem necrosis. During the season 2014 we noticed a new symptomatology type of ripening disorder on the variety. The new symptom showed not all berries fallowing the normal maturation stages, but single berries remaining at a soft but green stage till harvest. The broad distribution of these so called “green berries” symptoms in different production sites of our region, caused huge damage due to the difficulty of eliminating single berries per bunch before harvesting. Therefore, the Research Centre Laimburg began to investigate the reasons and origins of this new symptom. This work shows the results of first attempts to find causes for the symptom as well as the resulting approach to mitigate symptoms. Applications of magnesium leaf fertilizer showed first promising results against this putative disorder. To study the causal effect of the green berries 30 symptomatic vineyards in 2014 have been selected for a monitoring during the season 2016. To evaluate the foliar nutrient treatment two vineyards have been selected for application of magnesium sulfate and magnesium chloride. Leaf and berry nutrient analysis, as well as the main quality parameters during ripening have been performed. As soon as “green berries” symptoms appeared, incidence and severity have been evaluated. Most of the symptomatic vineyards of the 2016 monitoring showed light to clear magnesium deficit symptoms on their foliage. Only during the seasons 2020 and 2021 “green berries” symptoms could be found in the leaf fertilizer treatment vineyards. Both seasons showed a significant effect of the magnesium treatments to reduce the incidence and severity of the symptom. It seems that the appearance of the “green berries” symptom on Gewürztraminer is correlated to a disturbed uptake of magnesium of the vines.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.