terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces


The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process. PS extracts were obtained following the method previously developed by Canalejo et al.[1], and the monosaccharide composition were evaluated by GC-MS[2] to determine the PS families which are PS rich in arabinose and galactose (PRAG), mannans (MN), rhamnogalacturonans of type II (RG-II), homogalacturonans (HG) and non pectic polysaccharides (NPP). Titratable acidity (TA), Brix degree and high molecular weight PS (HMWP) were also determined. Statistically significant differences were found in the PS families between different varietal grape pomaces and even within the same grape variety. The extracts from red and white grape varieties were separated in the figure defined by the first two principal components, which explained 66.1% of the total variance. The ones obtained from white grapes are mainly related to the TA, HG, MN, PRAG and HMWP, while those from red varieties are close to the Brix degree and RG-II. Only Cabernet Sauvignon variety is correlated mainly with the TA, HG and NPP as white grape varieties. To sum up, both the type of grape and the grape variety are important factors with influence PS composition of grape pomaces.

Acknowledgements: The authors would like to thank the AEI and the MICINN for the funding provided for this study through the project PID2021-123361OR-C21 (with FEADER funds). M. C-F. also thanks the MICINN and AEI for funding her predoctoral contract (PRE2020-094464).


1) Canalejo et al. (2021) Optimization of a method to extract polysaccharides from white grape pomace by-products. Food Chem., 365: 130445, DOI 10.1016/j.foodchem.2021.130445

2) Guadalupe et al. (2012) Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC). Food Chem., 131: 367-374, DOI 10.1016/j.foodchem.2011.08.049


Publication date: October 16, 2023

Issue: ICGWS 2023

Type: Poster


María Curiel-Fernández1*, Zenaida Guadalupe2, Belén Ayestarán2, Silvia Pérez-Magariño1

1Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.
2ICVV-Universidad de La Rioja, Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain.

Contact the author*


polysaccharides, pomace, varietal grapes, by-products, revaluation


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.