Terroir 2016 banner
IVES 9 IVES Conference Series 9 Pacific Northwest wine regions and climates

Pacific Northwest wine regions and climates

Abstract

This paper presents a review of wine regions in the Pacific Northwest (PNW) of North America. The PNW consists of the states of Oregon, Washington and Idaho and the province of British Columbia. There are currently 36 governmentally approved regions in the PNW with 30 American Viticultural Areas (AVAs) in the states and 6 Designated Viticultural Areas (DVAs) in British Columbia with more being developed. General wine region characteristics and the climate structure for viticulture and wine production are detailed.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Gregory V. Jones (1)

(1) Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, USA

Contact the author

Keywords

Pacific Northwest, Oregon, Washington, Idaho, British Columba, American Viticultural Areas, Designated Viticultural Areas, viticulture, wine production, climate, terroir

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.

First application of an original methodology created to overcome conflicts between stakeholders in an important wine-growing territory: methodology, results, and perspectives in the application of sustainability EME4.1C

Considering the previous research and activities, also, on Sustainability EME4.1C which, as widely known, considers in a harmonious chain all the factors material, immaterial, moral and spiritual related to all aspects environmental, economic, social, existential, relational, ethical, technical and “MetaEthic” indexed 4.1C

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.

PyExpress – A pipeline for fast and reliable UAV image processing in vineyards

Increasing drought poses a challenge to viticulture, with complex impacts on grape yield and quality. The use of Unmanned Aerial Vehicles (UAV) in Precision Viticulture offers a valuable tool to detect drought stress, capturing its spatio-temporal variability and thus, supports management strategies.