Terroir 2016 banner
IVES 9 IVES Conference Series 9 Pacific Northwest wine regions and climates

Pacific Northwest wine regions and climates

Abstract

This paper presents a review of wine regions in the Pacific Northwest (PNW) of North America. The PNW consists of the states of Oregon, Washington and Idaho and the province of British Columbia. There are currently 36 governmentally approved regions in the PNW with 30 American Viticultural Areas (AVAs) in the states and 6 Designated Viticultural Areas (DVAs) in British Columbia with more being developed. General wine region characteristics and the climate structure for viticulture and wine production are detailed.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Gregory V. Jones (1)

(1) Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, USA

Contact the author

Keywords

Pacific Northwest, Oregon, Washington, Idaho, British Columba, American Viticultural Areas, Designated Viticultural Areas, viticulture, wine production, climate, terroir

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.

Merging fast sensory profiling with non-targeted GC-MS analysis for multifactorial experimental wine making

Wine aroma is influenced by several viticultural and oenological factors. In this study we used experimental wine making in a full factorial design to determine the impact of grapevine age, must turbidity, and yeast strain on the aroma of Vitis vinifera L. cv. Riesling wines. A recently developed, non-targeted SPME-GC-MS fingerprinting approach for wine volatiles was used. This approach includes the segmentation and mathematical transformation of chromatograms in combination with Parallel Factor Analysis (PARAFAC) and subsequent deconvolution of important chromatogram segments.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).