terclim by ICS banner
IVES 9 IVES Conference Series 9 What triggers the decision to ripen 

What triggers the decision to ripen 

Abstract

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening. Our recent investigations highlight the involvement of NAC genes in regulating berry ripening. Among these, NAC33 is implicated in terminating photosynthetic activity and organ growth, NAC60 orchestrates both ripening and senescence processes, and NAC61 regulates berry late- and post-ripening processes.Furthermore, coexpression, DAP-seq and physical interaction analyses, revealed the existence of a transcriptional hierarchy among NACs governing ripening decisions. This abstract provides insights into the molecular events driving grape berry ripening and sets the stage for further exploration of NAC-mediated regulatory mechanisms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sara Zenoni1*, Chiara Foresti1, Alessandra Amato1, Erica D’Incà1, Nicola Vitulo1, Mario Pezzotti1, Tomas Matus2, Giovanni Battista Tornielli3, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
2 Institute for Integrative Systems Biology, I²SysBio (Universitat de València – CSIC), 46908, Paterna, Valencia, Spain
3 Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell’Università 16, 35020, Legnaro (PD), Italy

Contact the author*

Keywords

Ripening, Berry, Transcriptomic, Regulation, NAC

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.

Enhancing vineyard resilience: evaluating sustainable practices in the Douro demarcated region

In mediterranean agriculture, sustainability and productivity are seriously threatened by climate change and water scarcity. This situation is exacerbated by poor management practices such as excessive use of agrochemicals, overgrazing, and monoculture. The Douro demarcated region (ddr) is an emblematic region, classified world heritage site by UNESCO in 2001. Viticulture is the main agricultural activity in DDR, widely known to produce port wine.

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss

Electromagnetic conductivity mapping and harvest zoning: deciphering relationships between soil and wine quality

Using electromagnetic conductivity mapping and GIS technology, we identified two unique soil zones within a 0.8-hectare Cabernet Franc block in central Virginia, USA.