terclim by ICS banner
IVES 9 IVES Conference Series 9 What triggers the decision to ripen 

What triggers the decision to ripen 

Abstract

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening. Our recent investigations highlight the involvement of NAC genes in regulating berry ripening. Among these, NAC33 is implicated in terminating photosynthetic activity and organ growth, NAC60 orchestrates both ripening and senescence processes, and NAC61 regulates berry late- and post-ripening processes.Furthermore, coexpression, DAP-seq and physical interaction analyses, revealed the existence of a transcriptional hierarchy among NACs governing ripening decisions. This abstract provides insights into the molecular events driving grape berry ripening and sets the stage for further exploration of NAC-mediated regulatory mechanisms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sara Zenoni1*, Chiara Foresti1, Alessandra Amato1, Erica D’Incà1, Nicola Vitulo1, Mario Pezzotti1, Tomas Matus2, Giovanni Battista Tornielli3, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
2 Institute for Integrative Systems Biology, I²SysBio (Universitat de València – CSIC), 46908, Paterna, Valencia, Spain
3 Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell’Università 16, 35020, Legnaro (PD), Italy

Contact the author*

Keywords

Ripening, Berry, Transcriptomic, Regulation, NAC

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest.

La haie bocagère comme critère de zonage à l’échelle parcellaire

In the French AOCs, the production area of ​​the raw material can be subject to plot delimitation based on criteria of physical environment and use. On the other hand, many environmental zonings are developing and the AOCs are called upon include provisions relating to these concerns. Hedges, through their effects on local changes in the regional climate and on functional biodiversity, can impact the functioning of vines and orchards. It is for this reason that their consideration as a delimitation criterion is envisaged.

Intraregional profiles of varietal thiols and precursors in Sauvignon Blanc juices and wines from the Adelaide Hills

Aims: To investigate the intraregional variation of varietal thiol precursors and free thiols in Sauvignon blanc grape juices and experimental wines arising from the Adelaide Hills Geographical Indication (GI) in South Australia.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.