terclim by ICS banner
IVES 9 IVES Conference Series 9 What triggers the decision to ripen 

What triggers the decision to ripen 

Abstract

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening. Our recent investigations highlight the involvement of NAC genes in regulating berry ripening. Among these, NAC33 is implicated in terminating photosynthetic activity and organ growth, NAC60 orchestrates both ripening and senescence processes, and NAC61 regulates berry late- and post-ripening processes.Furthermore, coexpression, DAP-seq and physical interaction analyses, revealed the existence of a transcriptional hierarchy among NACs governing ripening decisions. This abstract provides insights into the molecular events driving grape berry ripening and sets the stage for further exploration of NAC-mediated regulatory mechanisms.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Sara Zenoni1*, Chiara Foresti1, Alessandra Amato1, Erica D’Incà1, Nicola Vitulo1, Mario Pezzotti1, Tomas Matus2, Giovanni Battista Tornielli3, Marianna Fasoli1

1 Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
2 Institute for Integrative Systems Biology, I²SysBio (Universitat de València – CSIC), 46908, Paterna, Valencia, Spain
3 Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Viale dell’Università 16, 35020, Legnaro (PD), Italy

Contact the author*

Keywords

Ripening, Berry, Transcriptomic, Regulation, NAC

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Chitosan elicits mono-glucosylated stilbene production and release in fed-batch fermentation of grape cells 

In the present study, the optimal conditions of grape (Vitis vinifera cv ‘Barbera’) cell cultures in batch and fed-batch bioreactor processes were studied to specifically improve the production of mono-glucosylated stilbenes.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects.

Mapping grape composition in the field using VIS/SWIR hyperspectral cameras mounted on a UTV

Assessing grape composition is critical in vineyard management. It is required to decide the harvest date and to optimize cultural practices toward the achievement of production goals. The grape composition is variable in time and space, as it is affected by the ripening process and depends on soil and climate conditions.

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.