terclim by ICS banner
IVES 9 IVES Conference Series 9 Juvenile-to-adult vegetative phase transition in grapevine 

Juvenile-to-adult vegetative phase transition in grapevine 

Abstract

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge. Here, we present a detailed global gene expression analysis of the juvenile-to-adult phase transition during the development of grapevine plantlets grown from seeds. The RNA-seq analysis demonstrated that miR156 was significantly repressed in the grapevine’s adult phase, where the appearance of tendrils acts as a marker of the transition. Consistent with the results reported in other species, we observed the activation of several SPL genes, known to be targets of miR156, and providing evidence for the conservation of the regulatory module miR156-SPLs in grapevine. However, no variation was detected in the expression of miR172, a key determinant in the transition to flowering in other species. This could be explained considering that grapevines do not flower during the first years of growth. Interestingly, we were still able to observe the overexpression of several genes known to be involved in the floral meristem identity transition which were also been detected along tendril development, consistently with the proposed common ontogenetic origin of tendrils and inflorescences in the Vitaceae family.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Diego Lijavetzky1*, Yolanda Ferradás2,3, Carolina Royo3, José Miguel Martínez-Zapater3

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2Departamento de Biología Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
3Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, La Rioja, Spain

Contact the author*

Keywords

phase change, juvenile phase, flowering transition, tendril development, miRNA, RNA-seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aceto Balsamico Tradizionale di Modena” PDO authenticity: detection of caramel-containing vinegar by HS-GC-IMS

Balsamic vinegars of Modena (Italy), namely Aceto Balsamico di Modena PGI (AB PGI) and Aceto Balsamico Tradizionale di Modena PDO (ABT PDO) are among the most important geographical indication products for Italy. ABT PDO, despite its very limited production, is recognized as one of the most representative Italian artisan gastronomic products, and it is known and commercialized all around the world. The economic value of ABT PDO (“affinato” and “extra-vecchio” types, depending on the aging), prepared following a traditional way and aged for many years in a set of barrels (transferring a certain amount of vinegar from one cask to another in a decreasing “topping up” procedure) is great, when compared to AB industrially prepared with caramel. AB PGI is certainly the most widespread industrial-type vinegar in the world, deriving from low-temperature condensed grape must (or cooked must) mixed with wine vinegar, obtaining balsamic vinegars with a caramel-like taste. Depending on its economic value, ABT PDO is often object of fraud, requiring to fight counterfeit products and imitations.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Further insight on the use of yeast derivative products as alcoholic fermentation enhancers

Issues that can arise during the alcoholic fermentation are frequently attributed to imbalances or deficiencies in the nutrient composition of the fermentation medium.

Are biochemical markers the key to predicting wine aroma balance?

Wine aroma quality is a complex interplay of factors like terroir, vinification techniques, that modulate aroma compound composition.

Using open source software in viticultural research

Many high quality Open Source scientific applications have been available for a long time. Some of them have proved to be particularly useful for carrying out the usual activities involved in viticultural research projects, such as statistical analyses (including spatial analyses), GIS work, database management (possibly integrated with statistical and spatial analysis) and even “low-level” often highly time-consuming activities (e.g. repetitive task on text files).