terclim by ICS banner
IVES 9 IVES Conference Series 9 Juvenile-to-adult vegetative phase transition in grapevine 

Juvenile-to-adult vegetative phase transition in grapevine 

Abstract

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge. Here, we present a detailed global gene expression analysis of the juvenile-to-adult phase transition during the development of grapevine plantlets grown from seeds. The RNA-seq analysis demonstrated that miR156 was significantly repressed in the grapevine’s adult phase, where the appearance of tendrils acts as a marker of the transition. Consistent with the results reported in other species, we observed the activation of several SPL genes, known to be targets of miR156, and providing evidence for the conservation of the regulatory module miR156-SPLs in grapevine. However, no variation was detected in the expression of miR172, a key determinant in the transition to flowering in other species. This could be explained considering that grapevines do not flower during the first years of growth. Interestingly, we were still able to observe the overexpression of several genes known to be involved in the floral meristem identity transition which were also been detected along tendril development, consistently with the proposed common ontogenetic origin of tendrils and inflorescences in the Vitaceae family.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Diego Lijavetzky1*, Yolanda Ferradás2,3, Carolina Royo3, José Miguel Martínez-Zapater3

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2Departamento de Biología Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
3Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, La Rioja, Spain

Contact the author*

Keywords

phase change, juvenile phase, flowering transition, tendril development, miRNA, RNA-seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The effect of short and long-term water deficit on physiological performance and leaf microbiome of different rootstock and scion combinations

Climate change, particularly drought stress, threatens viticulture sustainability. Understanding scion-rootstock interactions and their link to the grapevine microbiome is key to improving vine health, productivity, and drought resilience.

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].