terclim by ICS banner
IVES 9 IVES Conference Series 9 Juvenile-to-adult vegetative phase transition in grapevine 

Juvenile-to-adult vegetative phase transition in grapevine 

Abstract

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge. Here, we present a detailed global gene expression analysis of the juvenile-to-adult phase transition during the development of grapevine plantlets grown from seeds. The RNA-seq analysis demonstrated that miR156 was significantly repressed in the grapevine’s adult phase, where the appearance of tendrils acts as a marker of the transition. Consistent with the results reported in other species, we observed the activation of several SPL genes, known to be targets of miR156, and providing evidence for the conservation of the regulatory module miR156-SPLs in grapevine. However, no variation was detected in the expression of miR172, a key determinant in the transition to flowering in other species. This could be explained considering that grapevines do not flower during the first years of growth. Interestingly, we were still able to observe the overexpression of several genes known to be involved in the floral meristem identity transition which were also been detected along tendril development, consistently with the proposed common ontogenetic origin of tendrils and inflorescences in the Vitaceae family.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Diego Lijavetzky1*, Yolanda Ferradás2,3, Carolina Royo3, José Miguel Martínez-Zapater3

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2Departamento de Biología Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
3Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, La Rioja, Spain

Contact the author*

Keywords

phase change, juvenile phase, flowering transition, tendril development, miRNA, RNA-seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry.

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Assessment of antimicrobial effect of chitosan extracted from different sources against unwanted wine microorganisms

During wine production process high attention to the microbiological control from fermentation of the grape must to bottling is necessary. In fact, control of the indigenous microflora of the grape ensures correct fermentation activity of the inoculated starter, while control of the microorganisms in the finished wine is essential to prevent wine spoilage and to ensure the dominance of the desired bacteria when malolactic fermentation is required (Mas and Portillo, 2022).

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.