terclim by ICS banner
IVES 9 IVES Conference Series 9 Juvenile-to-adult vegetative phase transition in grapevine 

Juvenile-to-adult vegetative phase transition in grapevine 

Abstract

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge. Here, we present a detailed global gene expression analysis of the juvenile-to-adult phase transition during the development of grapevine plantlets grown from seeds. The RNA-seq analysis demonstrated that miR156 was significantly repressed in the grapevine’s adult phase, where the appearance of tendrils acts as a marker of the transition. Consistent with the results reported in other species, we observed the activation of several SPL genes, known to be targets of miR156, and providing evidence for the conservation of the regulatory module miR156-SPLs in grapevine. However, no variation was detected in the expression of miR172, a key determinant in the transition to flowering in other species. This could be explained considering that grapevines do not flower during the first years of growth. Interestingly, we were still able to observe the overexpression of several genes known to be involved in the floral meristem identity transition which were also been detected along tendril development, consistently with the proposed common ontogenetic origin of tendrils and inflorescences in the Vitaceae family.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Diego Lijavetzky1*, Yolanda Ferradás2,3, Carolina Royo3, José Miguel Martínez-Zapater3

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2Departamento de Biología Funcional, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
3Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, La Rioja, Spain

Contact the author*

Keywords

phase change, juvenile phase, flowering transition, tendril development, miRNA, RNA-seq.

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile

Vignobles sur les pentes en Bourgogne : l’aube d’un nouveau modèle de l’Antiquité au Moyen Âge

La découverte d’une vigne gallo-romaine en plaine à Gevrey-Chambertin (Côte-d’Or) constitue un point important pour la compréhension de la construction des terroirs viticoles de Bourgogne. Sa situation en plaine constitue pour nous le point de départ d’une large réflexion sur la mise en place du modèle de viticulture de coteau qui prévaut en Bourgogne et sur les facteurs de ce changement de norme de qualité viticole. Les sources mobilisées pour cette approche interdisciplinaire et diachronique sont géomorphologiques, archéologiques et textuelles.

Ground vs trellis in rootstock cane production fields

Context and purpose of the study. The vine nursery sector is undergoing a transformation to meet growing environmental and sanitary demands.

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

The use of high-power ultrasound (US) during the winemaking process has been extensively studied at laboratory scale in order to demonstrate its possible use to improve the extraction of compounds of interest. However, studies on semi-industrial and industrial scale are needed to confirm this positive effect, since the International Organization of Vine and Wine approved its industrial use in 2019 [1].