terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Plastic debris at vines: carriers of pollutants in the environment?

Plastic debris at vines: carriers of pollutants in the environment?

Abstract

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines. Tying tape fits within the category of meso-plastics, difficult to recover due to their abundance and limited size. After pruning, most of the tying tapes end in the soil of vineyards. Both types of materials are potential sources of microplastics during aging.

Depending on the affinity between pesticides and plastics, the latter can act as reservoirs of this kind of pollutants, contributing to their delayed release in the environment of vineyards, and/or serving as carriers of pesticides into the trophic web, and/or into surface waters due to wind and run-off transport. This presentation deals with the characterization of plastic debris collected from vineyards. Thus, the presence of pesticides residues in this matrix were determined, including a comparison with their levels in soil, and the study of the sorption/desorption processes of pesticides in new and aged samples of different types of vineyard plastics.

Residues of pesticides in plastic litter, collected from conventionally managed vineyards, varied from 100 ng g-1 to more than 10000 ng g-1. The range of compounds remaining in this matrix included not only moderately lipophilic pesticides, but also medium polarity species, i.e. metalaxyl, carbendazim and dimethomorph. The strength of interaction between pesticides and the two main types of plastic residues identified in vineyards (PE and PP) was mostly controlled by the degree of polymer weathering, which was characterized by FTIR in the total attenuated reflectance mode (ATR).

Acknowledgements: M.C. acknowledges a FPI contract to the Spanish Ministry of Science and Innovation. Funds received from Xunta de Galicia (project ED431C2021/06) are acknowledged.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

I. Rodríguez1*, M. Cobo-Golpe1, G.R. Gutierrez1, J. Álvarez1, V. Fernández1, P. Blanco2, M. Ramil1

1 Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS – Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, R/Constantino Candeira SN, 15782 Santiago de Compostela, Spain
2 Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio s/n, 32428, Leiro-Ourense

Contact the author*

Keywords

plastic litter, vineyards, pesticides, occurrence, desorption

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Evaluation of terroir suitability for vine cultivation in new areas using geographic multi-criteria decision support

Based on historical vine cultivation, the recent development of wine production in Drama wine region (Greece) has led to vine cultivation expansion of white and red varieties. The current cultivation of 500 ha of vineyards is expected to increase in the coming years. Natural terroir units (NTU) have been designed recently to support the production of high quality wines in the region [1]. The aim of this work is to evaluate the relevancy of the proposed NTUs regarding their suitability to produce wines of specific sensorial identity, and to provide guidelines for correct site selection for the expanding wine industry of the region.

Phenotyping bud break and trafficking of dormant buds from grafted vine

In grapevine, phenology from bud break to berry maturation, depends on temperature and water availability. Increases in average temperatures accelerates initiation of bud break, exposing newly formed shoots to detrimental environmental stresses. It is therefore essential to identify genotypes that could delay phenology in order to adapt to the environment. The use of different rootstocks has been applied to change scion’s characteristics, to adapt and resist to abiotic and biotic stresses[1].

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Characterization of spoilage yeasts from Malbec grapes from San Rafael wine region (Argentina)

The yeast ecosystem in grape musts is quite broad and depends on the region and the health of the grapes. Within this, there are yeasts that can generate fermentative deviations and/or cause defects in the wine. It is very important to address this issue because there are significant economic losses in the wine industry when the fermentation process and/or the organoleptic characteristics of the wine are negatively affected, even more today since climate change has a marked effect on the composition of this ecosystem. The aim of this work is to characterize the behavior regarding detrimental oenological features of potential spoilage yeasts isolated from viticultural environments.