terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Abstract

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1,was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants. GF16-Ver1 shows a 2bp difference in fragment size, which is sufficiently descriptive to discriminate between the original PN allele and the mutant Ver1 allele of PPN associated to early veraison. All screened cultivars showing the specific fragment sizes of the veraison affecting PN or PPN allele, appeared to be related to the Pinot family, demonstrating its unique character. Grouping of cultivars based on the fragment length of GF16-Ver1 matched with known pedigrees and allowed a reliable allocation of entire family trees to their respective PN or PPN founder. Additionally, grouping of cultivars by the GF16-Ver1 marker demonstrated the phenological significance and descriptive value. The marker enables an easy screening of genetic resources and breeding material using established SSR-based marker-assisted selection pipelines. The use of GF16-Ver1 will help breeders to adapt their breeding programs for cool-climate viticulture to the challenges of climate change through counter-selection of Ver1. It will also help to elucidate all early ripening PPN descendants on a genetic basis and demonstrate the high relevance of this locus in current cool-climate varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florian Schwander*, Franco Röckel, Ludger Hausmann, Reinhard Töpfer

Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany

Contact the author*

Keywords

climate change, cool climate viticulture, marker development, Frühburgunder, Spätburgunder

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of cultivar and its drought tolerance on soil microbiome

Soil microbiome plays a crucial role in plant health and resilience, particularly under abiotic stress conditions such as drought.

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol

The Baco Blanc, the Armagnac hybrid variety adapted to the viticultural challenges of tomorrow

Today in the wine industry, a lot of alternatives are available for reducing phytosanitary inputs. Among these, prophylaxis, the use of biocontrol products and the deployment of pathogen-resistant vines are the most promising. eugenol (2-methoxy-4-(2-propenyl)-phenol), a molecule with recognised antifungal properties, can contribute to the last two alternatives. This molecule has been identified as an endogenous compound in the baco blanc hybrid variety used in armagnac pdo, which is at least tolerant to botrytis cinerea.

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

The increasing frequency of heat waves during grape ripening presents challenges for the production of high-quality wine grapes. This underscores the significance of developing effective irrigation and canopy management techniques to optimize both yield and grape quality.
A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality. In a four-block experimental vineyard at Bodega Ribas in Mallorca, two irrigation treatments—moderate and severe deficit irrigation—were implemented. Within each irrigation plot, three light exposure treatments were randomly assigned, encompassing exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening.