terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Abstract

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1,was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants. GF16-Ver1 shows a 2bp difference in fragment size, which is sufficiently descriptive to discriminate between the original PN allele and the mutant Ver1 allele of PPN associated to early veraison. All screened cultivars showing the specific fragment sizes of the veraison affecting PN or PPN allele, appeared to be related to the Pinot family, demonstrating its unique character. Grouping of cultivars based on the fragment length of GF16-Ver1 matched with known pedigrees and allowed a reliable allocation of entire family trees to their respective PN or PPN founder. Additionally, grouping of cultivars by the GF16-Ver1 marker demonstrated the phenological significance and descriptive value. The marker enables an easy screening of genetic resources and breeding material using established SSR-based marker-assisted selection pipelines. The use of GF16-Ver1 will help breeders to adapt their breeding programs for cool-climate viticulture to the challenges of climate change through counter-selection of Ver1. It will also help to elucidate all early ripening PPN descendants on a genetic basis and demonstrate the high relevance of this locus in current cool-climate varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florian Schwander*, Franco Röckel, Ludger Hausmann, Reinhard Töpfer

Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany

Contact the author*

Keywords

climate change, cool climate viticulture, marker development, Frühburgunder, Spätburgunder

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

The zoning of grapevine in a hilly area should consider the variability of the environmental characteristics due to topography. Since soil and climate data are usually available as point data

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.