terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Abstract

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1,was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants. GF16-Ver1 shows a 2bp difference in fragment size, which is sufficiently descriptive to discriminate between the original PN allele and the mutant Ver1 allele of PPN associated to early veraison. All screened cultivars showing the specific fragment sizes of the veraison affecting PN or PPN allele, appeared to be related to the Pinot family, demonstrating its unique character. Grouping of cultivars based on the fragment length of GF16-Ver1 matched with known pedigrees and allowed a reliable allocation of entire family trees to their respective PN or PPN founder. Additionally, grouping of cultivars by the GF16-Ver1 marker demonstrated the phenological significance and descriptive value. The marker enables an easy screening of genetic resources and breeding material using established SSR-based marker-assisted selection pipelines. The use of GF16-Ver1 will help breeders to adapt their breeding programs for cool-climate viticulture to the challenges of climate change through counter-selection of Ver1. It will also help to elucidate all early ripening PPN descendants on a genetic basis and demonstrate the high relevance of this locus in current cool-climate varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florian Schwander*, Franco Röckel, Ludger Hausmann, Reinhard Töpfer

Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany

Contact the author*

Keywords

climate change, cool climate viticulture, marker development, Frühburgunder, Spätburgunder

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs

Perception of Rose Oxide Enantiomers, Linalool and α-Terpineol to Gewürztraminer Wine Aroma

Monoterpenes are important aroma compounds in white wines. Many monoterpenes are chiral and the chiral forms have different aroma qualities.

Aging in amphorae with different porosity for sustainable production of Nero d’Avola wine

In recent years, the use of amphorae in winemaking has become more frequent, symbolizing a return to the origins of vinification to broaden the availability of wines with different style.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.