terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

Abstract

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1,was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants. GF16-Ver1 shows a 2bp difference in fragment size, which is sufficiently descriptive to discriminate between the original PN allele and the mutant Ver1 allele of PPN associated to early veraison. All screened cultivars showing the specific fragment sizes of the veraison affecting PN or PPN allele, appeared to be related to the Pinot family, demonstrating its unique character. Grouping of cultivars based on the fragment length of GF16-Ver1 matched with known pedigrees and allowed a reliable allocation of entire family trees to their respective PN or PPN founder. Additionally, grouping of cultivars by the GF16-Ver1 marker demonstrated the phenological significance and descriptive value. The marker enables an easy screening of genetic resources and breeding material using established SSR-based marker-assisted selection pipelines. The use of GF16-Ver1 will help breeders to adapt their breeding programs for cool-climate viticulture to the challenges of climate change through counter-selection of Ver1. It will also help to elucidate all early ripening PPN descendants on a genetic basis and demonstrate the high relevance of this locus in current cool-climate varieties.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Florian Schwander*, Franco Röckel, Ludger Hausmann, Reinhard Töpfer

Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institut, Siebeldingen, Germany

Contact the author*

Keywords

climate change, cool climate viticulture, marker development, Frühburgunder, Spätburgunder

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

Impact of yeast strains on wine profiles of nine PIWIs: focus on volatile thiols

Disease resistant grapevine varieties (PIWI) are increasingly important for sustainable wine production, yet the impact of different yeasts on their wine profiles remains poorly studied. In this study, nine white interspecies varieties (i.e., caladris blanc, fleurtai, hibernal, johanniter, muscaris, sauvignon kretos, soreli, souvignier gris, and voltis) grown at the faculty of agriculture, university of Zagreb (Croatia) were vinified with three different saccharomyces cerevisiae yeasts (control strain, zymaflore x5, and zymaflore xarom).

Impact of dried stems in winemaking on Veneto Passito wines

The use of stems during fermentation is generally avoided due to the herbaceous off-odors they can impart to the wine. [1].

A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

A 3-year zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out on a wine territory of about 500 ha.

Specificities of red wines without sulfites: which role for acetaldehyde and diacetyl? A compositional and sensory approach.

Sulfur dioxide is the most commonly used additive in oenology to protect wine from oxidation and microorganisms. Once added to wine SO2 is able to react with carbonyl compounds to form carbonyl bisulfites what affects their reactivity.