terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

Abstract

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines. To monitor the impacts of irrigation and leaf position on PSII functionality, MONI/MICRO PAM heads were mounted on the south (polar facing) and north (equatorial facing) sides of the canopy of each vine. Water stress decreased midday stem water potential (SWP) to -1.4 MPa in water-stressed plants, while well-watered plants maintained SWP at -0.8 MPa. Maximum efficiency of PSII (Fv/Fm) decreased by higher exposure to heat and radiation on the northern side, especially when plants were subjected to water stress. Absorbed energy partitioning in PSII differed between northern and southern sides, and it was influenced by irrigation. At midday, leaves on the southern side showed higher photochemical (Y(II)) and lower non-photochemical yield (Y(NPQ)) than northern leaves. Water stress decreased Y(II) and increased Y(NPQ) at midday predominantly on the northern side. During a heatwave, PSII showed an increase in photoinhibition (Y(NO)) in water-stressed plants on the northern side; however, this effect was reversible and persisted only one day following the heatwave and decreased thereafter to a similar rate to that observed in the rest of the canopy. These findings suggest that, in the short-term, irrigation can be tailored to sustain the canopy during heat waves, while in the medium-term, canopy management strategies (such as shade netting) may be needed to maintain leaf function during and following heatwaves.

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Walaa Shtai1*, Paul Petrie2, Marcos Bonada3, Massimo Tagliavini1 , Georg Wohlfahrt5, Edwards Everard4

1Free University of Bolzano- Bozen, Italy
2South Australian Research and Development Institute (SARDI), Adelaide, Australia
3Treasury Wine Estates, Adelaide, Australia.
4CSIRO Agriculture and Food, Adelaide, Australia
5University of Innsbruck, Austria

Contact the author*

Keywords

chlorophyll fluorescence, heat stress, water stress, grapevines, energy partitioning, heat dissipation, photoinhibition

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.