terclim by ICS banner
IVES 9 IVES Conference Series 9 Genetic and hormonal regulation of grape berry cuticle formation

Genetic and hormonal regulation of grape berry cuticle formation

Abstract

The plant surface typically comprises of various epidermal cell types which synthesise and deposit a protective waxy layer known as the cuticle. The cuticle is a significant contributor to important crop traits related to drought tolerance, biotic stress, postharvest fruit quality as well as providing structural support. In this work we have investigated grape berry cuticle formation in the context of the accumulation of anti-fungal specialised metabolites and the ability of the cuticle to structurally cope with the rapid expansion of ripening berries. Metabolic QTL analysis was performed in a grapevine cross population, using chemical profiling data collected via GC-MS analysis for cuticular waxes. QTLs were identified for individual as well as classes of waxes, and a significant QTL associated with triterpenoid formation further characterised through the implementation of gene co-expression analysis. In vivo characterisation of a candidate triterpene synthase gene confirmed its role as a key gene for grapevine triterpene biosynthesis. Additionally, the hormonal regulation of berry cuticle formation was studied via chemical analysis of berry cuticles after application of various phytohormones. Application of cytokinin modulated the accumulation of berry surface waxes, leading to changes in the tensile properties of the berry skins, and a subsequent reduction in fruit cracking. These results highlighted the strong genetic association with cuticle formation and properties, but also the ability for growers to modulate this important physiological trait, and will potentially allow for optimised crop improvement strategies in the future.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Robin Bosman1, Jessica Vervalle2 and Justin Lashbrooke2*

1 South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa.
Department of Genetics, Stellenbosch University, Stellenbosch, South Africa

Contact the author*

Keywords

Cuticle, Fruit surface, Metabolic regulation, Triterpenoids, cracking

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.

Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Une étude a été menée pendant neuf ans sur deux vignes non-irriguées de Sauvignon blanc commercialisés, plantées à différentes localités (A et B) dans le district de Stellenbosch. Deux parcelles expérimentales, situées sur deux formations géologiques différentes, ont été identifiées au sein de chaque vignoble. A chaque localité une des

Zonazione dell’area viticola doc durello

Il lavoro di zonazione riveste un ruolo importante per capire le potenzialità e la vocazionalità di una specifica area viticola. La viticoltura dovrebbe essere vista in funzione dell’obiettivo enologico che si vuole realizzare e quindi particolare importanza riveste il risultato delle vinificazioni delle uve provenienti dai vigneti delle diverse aree della zona di produzione oggetto d’indagine. La zonazione dell’area a DOC Monti Lessini Durello ha preso in esame la varietà “Durella”, vitigno autoctono del territorio, che rappresenta la maggior parte della produzione vitivinicola della zona.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Conventions and methods towards landscape quality: an application in the Douro (Portugal)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...