terclim by ICS banner
IVES 9 IVES Conference Series 9 Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Abstract

Seedless table grapes are greatly appreciated for fresh and dry consumption. There is also some interest in seedless winegrapes, because the combination of lower fruit set, smaller berries with higher skin/pulp ratio and looser bunches with the absence of seeds in crushed berries, a possible source of astringent tannins, might also have favorable effects on wine quality. The gene VviAGL11 has been shown to play a central role in stenospermocarpy in Sultanina, but the molecular bases of other sources of stenospermocarpy as well as of parthenocarpy have not been clarified yet. To help fill this gap, a genetic and phenotypic characterization of seedless somatic variants from other cultivars has been undertaken, with special emphasis on a parthenocarpic Sangiovese mutant known as Corinto Nero.
In vitro pollen germination tests, in vivo pollination trials, histological observation of female gametophyte development, and genetic analysis of seedlings have shown that Corinto Nero is incapable of forming seeds probably due to meiotic anomalies.
In addition to a pairwise transcriptomic comparison between the mutant and the seeded wild-type, we present here a comparative genomic analysis between Corinto Nero and 10 seeded clones of Sangiovese based on short-read resequencing to identify sequence and structural variation that may reveal candidate genes for parthenocarpy in Corinto Nero.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Laura Costantini1*§, Paula Moreno-Sanz, Anna Nebish3,4, Silvia Lorenzi1, Elvira d’Amato5, Mara Miculan6,8, Gabriele Magris6,7, Gabriele Di Gaspero6, Ivana Gribaudo9, Anna Schneider9, Maria Stella Grando2

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Trento), Italy
2 Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige (Trento), Italy
3 Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de la Rioja), Logroño, Spain
4 Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia
5 Department of Physics, University of Trento, Povo (Trento), Italy
6 Istituto di Genomica Applicata, Udine, Italy
7 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine (Udine), Italy
8 Center of Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia
9 Institute for Sustainable Plant Protection – Research Council of Italy, Grugliasco (Torino), Italy

§ Equally contributed

Contact the author*

Keywords

somatic variation, clones, seedlessness, reproductive development, genomic structural variation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Terroir Hesse – Soil determines wine style

The project “Terroir Hesse” works out the main type and characteristics of soil-based terroirs and the resulting wine styles for the hessian wine-growing regions Rheingau and Hessian Bergstrasse.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Soil, foliar, and juice nitrogen application: influence on fruit and wine for Chardonel grown in Virginia

Nitrogen (N) is applied in the vineyard or the winery in wine production systems. The influence of different routes of N application is not well understood.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].