terclim by ICS banner
IVES 9 IVES Conference Series 9 Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Abstract

Seedless table grapes are greatly appreciated for fresh and dry consumption. There is also some interest in seedless winegrapes, because the combination of lower fruit set, smaller berries with higher skin/pulp ratio and looser bunches with the absence of seeds in crushed berries, a possible source of astringent tannins, might also have favorable effects on wine quality. The gene VviAGL11 has been shown to play a central role in stenospermocarpy in Sultanina, but the molecular bases of other sources of stenospermocarpy as well as of parthenocarpy have not been clarified yet. To help fill this gap, a genetic and phenotypic characterization of seedless somatic variants from other cultivars has been undertaken, with special emphasis on a parthenocarpic Sangiovese mutant known as Corinto Nero.
In vitro pollen germination tests, in vivo pollination trials, histological observation of female gametophyte development, and genetic analysis of seedlings have shown that Corinto Nero is incapable of forming seeds probably due to meiotic anomalies.
In addition to a pairwise transcriptomic comparison between the mutant and the seeded wild-type, we present here a comparative genomic analysis between Corinto Nero and 10 seeded clones of Sangiovese based on short-read resequencing to identify sequence and structural variation that may reveal candidate genes for parthenocarpy in Corinto Nero.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Laura Costantini1*§, Paula Moreno-Sanz, Anna Nebish3,4, Silvia Lorenzi1, Elvira d’Amato5, Mara Miculan6,8, Gabriele Magris6,7, Gabriele Di Gaspero6, Ivana Gribaudo9, Anna Schneider9, Maria Stella Grando2

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige (Trento), Italy
2 Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige (Trento), Italy
3 Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino (CSIC, UR, Gobierno de la Rioja), Logroño, Spain
4 Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia
5 Department of Physics, University of Trento, Povo (Trento), Italy
6 Istituto di Genomica Applicata, Udine, Italy
7 Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine (Udine), Italy
8 Center of Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, Saudi Arabia
9 Institute for Sustainable Plant Protection – Research Council of Italy, Grugliasco (Torino), Italy

§ Equally contributed

Contact the author*

Keywords

somatic variation, clones, seedlessness, reproductive development, genomic structural variation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitro regeneration protocols, particularly through somatic embryogenesis (SE).

Nitrogen isotope ratio (δ15N) as a tool to trace the major nitrogen source in vineyards

Aim: to elucidate if it is possible to detect variations in the source of nitrogen (organic vs. inorganic) measuring nitrogen isotope ratio (δ15N) in berries and to examine the degree of variation occurring for this parameter naturally within a vineyard.

NEW INSIGHTS INTO THE EFFECT OF TORULASPORA DELBRUECKII/SACCHAROMYCES CEREVISIAE INOCULATION STRATEGY ON MALOLACTIC FERMENTATION PERFORMANCE

Winemaking is influenced by micro-organisms, which are largely responsible for the quality of the product. In this context, Non-Saccharomyces and Saccharomyces species are of great importance not only because it influences the development of alcoholic fermentation (AF) but also on the achievement of malolactic fermentation (MLF). Among these yeasts, Torulaspora delbrueckii allows in sequential inoculation with strains of S. cerevisiae shorter MLF realizations [5] . Little information is available on the temporal effect of the presence of T. delbrueckii on (i) the evolution of AF and (ii) the MLF performance.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Does spotted lanternfly phloem-feeding have downstream effects on wine volatiles? Preliminary insights into compositional shifts

The Spotted lanternfly (SLF), first detected in the U.S. in 2014, is an invasive phloem-feeding planthopper that poses a growing threat to grape and wine production in the U.S. In Pennsylvania, where it was first detected, reductions in grapevine production and fruit quality have been reported by commercial growers. Recent advances have begun to elucidate how SLF affects grapevine physiology and resource allocation, but no research has identified how SLF affects wine chemical composition and quality. Documented reductions in fruit sugar allocation due to heavy SLF phloem-feeding may have downstream effects on wine fermentation dynamics. Additionally, secondary metabolic responses stimulated by SLF may also influence berry chemical composition. The present study investigated SLF-mediated effects on wine composition through analysis of the volatile composition of wines produced from white- and red-fruited varieties of different Vitis parentage (e.g., Vitis vinifera vs. interspecific hybrids) following prolonged exposure to adult SLF phloem-feeding.