terclim by ICS banner
IVES 9 IVES Conference Series 9 The role of NAC61 transcription factor in the regulation of berry ripening progression 

The role of NAC61 transcription factor in the regulation of berry ripening progression 

Abstract

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated. We demonstrate that NAC61 self-activates and is targeted by NAC60, another master regulator of grapevine organ maturation. Moreover, NAC61 physically interacts with NAC60 triggering the activation of common targets. In our studies, several NAC-NAC synergistic interactions were demonstrated, allowing us to suppose the existence of a NAC-dependent regulatory network orchestrating berry ripening and whose exploration is our current main purpose. As members of such regulatory network, we defined a core of 13 NACs highly correlated with NAC60, NAC61 and NAC33, the latter? being a repressor of vegetative organ growth during the vegetative-to-mature phase transition. By using DAP-Seq combined with transcriptomic data and functional assays we reconstructed a hierarchical intra-family regulatory network. We confirmed NAC60 and NAC33 as high hierarchy activators and we traced the downstream network genes been active in fruit ripening. This work is of high interest as identifying key regulators governing berry ripening progression provides important biomarkers affecting quality of grapes and wine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Alessandra Amato1*, Chiara Foresti1, Luis Orduña2, Oscar Bellon1, Elodie Vandelle1, José Tomás Matus2,  Giovanni Battista Tornielli1, Sara Zenoni1

1 Department of Biotechnology, University of Verona, Verona, Italy
2 Institute for Integrative Systems Biology, Universitat de València-CSIC,46980 Paterna, Valencia, Spain

Contact the author*

Keywords

Ripening, NAC transcription factors, Regulatory network, Functional analysis, DAP-Seq

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Sensory and physicochemical impact of proanthocyanidic tannins on red wine fruity aroma

AIM: Previous research on the fruity character of red wines highlighted the role of esters [1]. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall fruity aroma of wine, contributing to a masking effect [2][3]. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches.

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines.

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

A new step toward the comprehensive valorisation of grape marc through subcritical water extraction of polysaccharides

Winemaking generates a significant amount of waste. Grape marc, the main solid residue, constitutes 20-25% of the pressed grapes and approximately 8-9 million tons are produced globally each year.

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]