IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Discrimination of monovarietal Italian red wines using derivative voltammetry

Discrimination of monovarietal Italian red wines using derivative voltammetry

Abstract

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics. In this work linear sweep voltammetry with different multivariate analysis tools (PCA, LDA, KNN, Random Forest, SVM) has been exploited to discriminate and classify Italian red wines from 10 different varieties.A total of 131 monovarietal Italian red wines vinified in 2015 or 2016 were collected from wineries across Italy. The varieties are: Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Primitivo, Raboso, Sagrantino, Sangiovese, and Teroldego. The wines of the same variety came from the same region. Linear sweep voltammograms were collected using a PalmSense3 potentiostat and disposable Screen-Printed Carbon Electrodes. The derivative voltammograms were obtained with a Savitzky Golay smoothing filter.The results obtained indicated a great diversity of voltammetric responses, but with raw data it was not possible to identify electrochemical features that discriminated the varieties. To obtain a higher discriminant ability first and second order derivative voltammogram were built.The second order derivative voltammograms (2DV) show similar trends within the same variety, in particular the varieties appear to be divided by the potential and intensity of the first peak (180-370 mV).From the PCA of 2DV (explained variance 78% with the first two components) 3 regions of the voltammograms that mainly contribute to PC1 and 4 to PC2 can be identified. Five of these regions (3 for PC1 and 2 for PC2) are at potentials lower than 600 mV, the region associated to the more easily oxidizable compounds. PC1 vs PC2 of the second order derivative voltammetry shows 3 groups with a visible separation of Nebbiolo and Teroldego from the other varieties.The best classification result has been obtained with a PCA-LDA of 2DV using the first 5 PC scores as predictors with an overall accuracy in calibration of 77.9% and an overall accuracy in prediction of 66.7%. The best accuracy has been obtained for varieties Nebbiolo, Teroldego and Sangiovese. The classification of two varieties (Cannonau and Primitivo) resulted problematic both in calibration and in prediction. To conclude, linear sweep voltammetry coupled to chemometric can be a suitable analytical tool technique for the classification of monovarietal red wines in a fast, cheap, and easy-to-use way. In addition, second-order derivative deconvolution of the voltammograms has been proven to be a suitable data pre-processing method for the interpretation of voltammograms from complex matrixes that are rich in oxidable compounds such as red wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Leonardo1, Slaghenaufi Davide1, Nouvelet Lea1, Curioni Andrea2, Giacosa Simone3, Mattivi Fulvio4, Moio Luigi5 and Versari Andrea5

1Department of Biotechnology, University of Verona, Italy
2Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
3Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy
4Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy

Contact the author

Keywords

Derivative Voltammetry, Varietal Identity, Wine Fingerprinting, Authenticity, Red Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).