IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Discrimination of monovarietal Italian red wines using derivative voltammetry

Discrimination of monovarietal Italian red wines using derivative voltammetry

Abstract

Identification of specific analytical fingerprints associated to grape variety, origin, or vintage is of great interest for wine producers, regulatory agencies, and consumers. However, assessing such varietal fingerprint is complex, time consuming, and requires expensive analytical techniques. Voltammetry is a fast, cheap, and user-friendly analytical tool that has been used to investigate and measure wine phenolics. In this work linear sweep voltammetry with different multivariate analysis tools (PCA, LDA, KNN, Random Forest, SVM) has been exploited to discriminate and classify Italian red wines from 10 different varieties.A total of 131 monovarietal Italian red wines vinified in 2015 or 2016 were collected from wineries across Italy. The varieties are: Aglianico, Cannonau, Corvina, Montepulciano, Nebbiolo, Primitivo, Raboso, Sagrantino, Sangiovese, and Teroldego. The wines of the same variety came from the same region. Linear sweep voltammograms were collected using a PalmSense3 potentiostat and disposable Screen-Printed Carbon Electrodes. The derivative voltammograms were obtained with a Savitzky Golay smoothing filter.The results obtained indicated a great diversity of voltammetric responses, but with raw data it was not possible to identify electrochemical features that discriminated the varieties. To obtain a higher discriminant ability first and second order derivative voltammogram were built.The second order derivative voltammograms (2DV) show similar trends within the same variety, in particular the varieties appear to be divided by the potential and intensity of the first peak (180-370 mV).From the PCA of 2DV (explained variance 78% with the first two components) 3 regions of the voltammograms that mainly contribute to PC1 and 4 to PC2 can be identified. Five of these regions (3 for PC1 and 2 for PC2) are at potentials lower than 600 mV, the region associated to the more easily oxidizable compounds. PC1 vs PC2 of the second order derivative voltammetry shows 3 groups with a visible separation of Nebbiolo and Teroldego from the other varieties.The best classification result has been obtained with a PCA-LDA of 2DV using the first 5 PC scores as predictors with an overall accuracy in calibration of 77.9% and an overall accuracy in prediction of 66.7%. The best accuracy has been obtained for varieties Nebbiolo, Teroldego and Sangiovese. The classification of two varieties (Cannonau and Primitivo) resulted problematic both in calibration and in prediction. To conclude, linear sweep voltammetry coupled to chemometric can be a suitable analytical tool technique for the classification of monovarietal red wines in a fast, cheap, and easy-to-use way. In addition, second-order derivative deconvolution of the voltammograms has been proven to be a suitable data pre-processing method for the interpretation of voltammograms from complex matrixes that are rich in oxidable compounds such as red wine.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Vanzo Leonardo1, Slaghenaufi Davide1, Nouvelet Lea1, Curioni Andrea2, Giacosa Simone3, Mattivi Fulvio4, Moio Luigi5 and Versari Andrea5

1Department of Biotechnology, University of Verona, Italy
2Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
3Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Italy
4Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, Italy

Contact the author

Keywords

Derivative Voltammetry, Varietal Identity, Wine Fingerprinting, Authenticity, Red Wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Role of landscape diversity for biodiversity conservation in viticulture: life+ biodivine’s results

Nowadays biodiversity loss is considered as a prior environmental issue. Agricultural landscapes are particularly concerned, mainly through the specialization and intensification of farming activities which lead, at a larger scale, to landscape simplification. Landscape management would be a good means to halt biodiversity loss, but large-scale studies remain rare. The life+ project BioDiVine aims to understand biodiversity dynamics and promote sustainable conservation actions at this scale in viticulture.

Shoot heterogeneity effects in a Shiraz/R99 vineyard

Nous avons fait des recherches sur l’effet de l’hétérogénéité des bourgeons sur les paramètres de la croissance végétative et reproductive, la physiologie de la vigne et la composition du raisin dans une parcelle de Shiraz/Richter 99. Des bourgeons sous-développés (typiquement plus courts et moins mûrs à la véraison) ont été comparés avec

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material.

Health benefits of wine industry by-products

The total global production of wine in 2021 was estimated at around 250 million hectoliters. The 30% of the total quantity of vinified grapes corresponds to wine by-products that represent nearly 20 million tons, of which 50% corresponds to the European Union. Wine by-products have been used for different purposes, in agriculture, cosmetics, pharmacy, biorefinery, feed, and the food

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.