Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Abstract

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector. The present study aims to develop climate change projections for grapevine yields in Europe. For this purpose, gridded climatic variables over a recent-past (1950-2000) and RCP8.5 future scenarios (2041-2060), are coupled with the STICS crop model. For each grid-cell in the European sector, soil (e.g. type, texture, depth) and terrain parameters are determined and used as model inputs. Grapevine and crop management variables are also defined. Yield simulations under current and future climates are then compared to identify climate change signals. For the recent-past, the crop model is able to properly simulate yields for the main current European wine regions, showing lower yields in Southern Europe and higher yields in more central/northern regions. For the future, the results depict an increase in yield in the later regions, and a decrease in the former, mostly over inner Iberia. The projections also show a northwards extension of the potential grapevine growth areas, emerging new potential winemaking regions in northern Europe. The current study is a first attempt to apply the STICS crop model to the whole European sector, by using climatic, soil and terrain data as inputs, and the results are thereby preliminary. By using climate change projections as inputs to crop models, the present approach may represent a key decision support system for the European winemaking sector.

 

 

 

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Helder FRAGA (1), Iñaki GARCÍA DE CORTÁZAR ATAURI (2), Aureliano MALHEIRO (1), João A. SANTOS (1)

(1) Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real Portugal
(2) French National Institute for Agricultural Research, INRA, US1116 AgroClim, F-84914 Avignon, France

 

Contact the author

Keywords

grapevine yields, dynamic modelling, climate change, STICS, Europe

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Effects of the biodynamic preparations 500 and 501 on vine and berry physiology, pedology and the soil microbiome

In the pursuit of increasing sustainability, climate change resiliency and independence of synthetic pesticides in agriculture, the interest of consumers and producers in organic and biodynamic farming is steadily increasing. This is in particular the case for the vitivinicultural industry in Europe, where more and more producers are converting from organic to biodynamic farming. However, clear scientific evidence showing that biodynamic farming improves vine physiology, vine stress resilience, berry or wine quality, or is more sustainable for the environment is still lacking although this issue has been addressed by several research teams worldwide.