Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Abstract

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector. The present study aims to develop climate change projections for grapevine yields in Europe. For this purpose, gridded climatic variables over a recent-past (1950-2000) and RCP8.5 future scenarios (2041-2060), are coupled with the STICS crop model. For each grid-cell in the European sector, soil (e.g. type, texture, depth) and terrain parameters are determined and used as model inputs. Grapevine and crop management variables are also defined. Yield simulations under current and future climates are then compared to identify climate change signals. For the recent-past, the crop model is able to properly simulate yields for the main current European wine regions, showing lower yields in Southern Europe and higher yields in more central/northern regions. For the future, the results depict an increase in yield in the later regions, and a decrease in the former, mostly over inner Iberia. The projections also show a northwards extension of the potential grapevine growth areas, emerging new potential winemaking regions in northern Europe. The current study is a first attempt to apply the STICS crop model to the whole European sector, by using climatic, soil and terrain data as inputs, and the results are thereby preliminary. By using climate change projections as inputs to crop models, the present approach may represent a key decision support system for the European winemaking sector.

 

 

 

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Helder FRAGA (1), Iñaki GARCÍA DE CORTÁZAR ATAURI (2), Aureliano MALHEIRO (1), João A. SANTOS (1)

(1) Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real Portugal
(2) French National Institute for Agricultural Research, INRA, US1116 AgroClim, F-84914 Avignon, France

 

Contact the author

Keywords

grapevine yields, dynamic modelling, climate change, STICS, Europe

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

Opportunities and challenges in the adoption of new grape varieties by producers: A case study from the Northeastern United

Grape breeding for resistance to fungal diseases is today very dynamic throughout the world notably in France. New varieties are obtained by hybridization between susceptible varieties of the vitis vinifera species and resistant genotypes, with breeding programs generally lasting between 15 and 25 years and resulting in the registration of a few new varieties. Though these varieties can provide several benefits and can be planted by winegrowers, they are not always systematically adopted.

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).