Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Abstract

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector. The present study aims to develop climate change projections for grapevine yields in Europe. For this purpose, gridded climatic variables over a recent-past (1950-2000) and RCP8.5 future scenarios (2041-2060), are coupled with the STICS crop model. For each grid-cell in the European sector, soil (e.g. type, texture, depth) and terrain parameters are determined and used as model inputs. Grapevine and crop management variables are also defined. Yield simulations under current and future climates are then compared to identify climate change signals. For the recent-past, the crop model is able to properly simulate yields for the main current European wine regions, showing lower yields in Southern Europe and higher yields in more central/northern regions. For the future, the results depict an increase in yield in the later regions, and a decrease in the former, mostly over inner Iberia. The projections also show a northwards extension of the potential grapevine growth areas, emerging new potential winemaking regions in northern Europe. The current study is a first attempt to apply the STICS crop model to the whole European sector, by using climatic, soil and terrain data as inputs, and the results are thereby preliminary. By using climate change projections as inputs to crop models, the present approach may represent a key decision support system for the European winemaking sector.

 

 

 

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Helder FRAGA (1), Iñaki GARCÍA DE CORTÁZAR ATAURI (2), Aureliano MALHEIRO (1), João A. SANTOS (1)

(1) Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real Portugal
(2) French National Institute for Agricultural Research, INRA, US1116 AgroClim, F-84914 Avignon, France

 

Contact the author

Keywords

grapevine yields, dynamic modelling, climate change, STICS, Europe

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

High resolution climate spatial analysis of European winegrowing regions

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties.

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Effect of one-year cover crop and arbuscular mycorrhiza inocululation in the microbial soil community of a vineyard

The microbial composition of the soil is an important factor to consider in viticulture, since its influence on the “terroir” and on the organoleptic properties of the wine have been demonstrated. Different agronomic techniques have the potential to modify the composition and functionality of the soil microbial community. Maintaining green covers is known to increase soil microbial diversity. The direct application of inoculum of beneficial microorganisms to the soil has also been used to increase their abundance. However, the environmental conditions of each site seem to have a determining weight in the result of these practices. In this study, we compared the effect on the microbial community of a cover crop with legumes in autumn and the inoculation of grapevines with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseae in the previous spring. The study has been carried out in a vineyard in Binissalem, Mallorca, Spain. After applying the treatments, we will analyze the soil microbial communities using the data obtained from Illumina amplification of soil DNA from the 16S and ITS regions to analyze bacteria and fungi community, respectively. In addition, we will record the physicochemical characteristics of the soil at each sampling point. The result showed that agronomic management, in the short term, has less influence than soil characteristics on the composition of the soil microbiome. With these results, we can conclude that in a vineyard, agricultural techniques should focus on improving the characteristics of the soil to improve the biodiversity of the soil microbiota.

Market analysis of Chilean Pinot noir, Carménère, and Cabernet-Sauvignon wines: A comparative study of chemical parameters across low, medium, and high price segments

Wine quality is a complex concept determined by multiple factors, including vineyard management, winemaking operations, and the sensory perception of key attributes.