Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Abstract

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector. The present study aims to develop climate change projections for grapevine yields in Europe. For this purpose, gridded climatic variables over a recent-past (1950-2000) and RCP8.5 future scenarios (2041-2060), are coupled with the STICS crop model. For each grid-cell in the European sector, soil (e.g. type, texture, depth) and terrain parameters are determined and used as model inputs. Grapevine and crop management variables are also defined. Yield simulations under current and future climates are then compared to identify climate change signals. For the recent-past, the crop model is able to properly simulate yields for the main current European wine regions, showing lower yields in Southern Europe and higher yields in more central/northern regions. For the future, the results depict an increase in yield in the later regions, and a decrease in the former, mostly over inner Iberia. The projections also show a northwards extension of the potential grapevine growth areas, emerging new potential winemaking regions in northern Europe. The current study is a first attempt to apply the STICS crop model to the whole European sector, by using climatic, soil and terrain data as inputs, and the results are thereby preliminary. By using climate change projections as inputs to crop models, the present approach may represent a key decision support system for the European winemaking sector.

 

 

 

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Helder FRAGA (1), Iñaki GARCÍA DE CORTÁZAR ATAURI (2), Aureliano MALHEIRO (1), João A. SANTOS (1)

(1) Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real Portugal
(2) French National Institute for Agricultural Research, INRA, US1116 AgroClim, F-84914 Avignon, France

 

Contact the author

Keywords

grapevine yields, dynamic modelling, climate change, STICS, Europe

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

A climatic classification of the world’s wine regions and winegrape variety concentration

In this video recording of the IVES science meeting 2024, German Puga (Wine Economics Research Centre, School of Economics and Public Policy, University of Adelaide, Adelaide, Australia) speaks about a climatic classification of the world’s wine regions and winegrape variety concentration. This presentation is based on an original article accessible for free on OENO One.

The use of viticultural and oenological performance of grapevines to identify terroirs: the example of Sauvignon blanc in Stellenbosch

Identification and characterisation of terroirs depends on knowledge of environmental parameters, functioning of the grapevine and characteristics of the final product. A network of plots of Sauvignon blanc was delimited in commercial vineyards in proximity to weather stations at 20 localities and their viticultural and oenological response was monitored for a period of seven years. These experimental plots were further characterised with respect to climate, soil and topography.