terclim by ICS banner
IVES 9 IVES Conference Series 9 Evaluation of wood starch content on bench grafting success rate in grapevine

Evaluation of wood starch content on bench grafting success rate in grapevine

Abstract

Since the emergence of phylloxera, grafting has been the most used propagation method in viticulture. Despite all the improvement measures implemented in the nurseries, it is frequent that graft success rates vary depending on the nursery process and scion/rootstock combinations. The reasons behind this unsatisfactory behaviour are still unknown and can be diverse, although carbohydrate reserves might be hypothesised to be crucial, since callus, root, and new tissue formation will be built based on them. In order to identify the effect of carbohydrates on grafting success, nine combinations were established based on the starch content in grapevine scionwoods (cv. Tempranillo clone VN69) and rootstocks cuttings (110 Richter clone 237) used for grafting: Low (L), Medium (M), High (H). To perform this work, more than 90 plants were omega grafted per carbohydrate content combination and, after the callusing period, transferred to the rooting field. In August, nine plants per combination were uprooted and the grafting success rate was recorded as well as the vegetative growth and root system characteristics (number and diameter). Likewise, histological and histochemical characterization (cellulose, starch, callose and lignin) was performed at the graft interface. The implications of carbohydrate content on success rate will be discussed, comparing the grafting success rates obtained with potential symptoms of incompatibility, irregular cell arrangement, slower vascular differentiation, or persistence of the necrotic layer.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ana Villa-Llop1,2*, Ana Pina3,4, Patricia Irisarri3,4, Melany Jiménez1, Luis Gonzaga Santesteban1

1 Departement of Agronomy, Biotechnology and Food Science, Univ. Pública de Navarra, Pamplona, Navarra, Spain
2 Vitis Navarra Nursery, Larraga, Navarra, Spain
3 Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avenida Montañana 930, 50059, Zaragoza, Spain
4Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013 Zaragoza, Spain

Contact the author*

Keywords

histology, scion-rootstock interaction, starch, success rate, viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

Integrating genomic prediction into grapevine breeding programs

Genomic selection (GS) has emerged as a transformative tool for accelerating breeding programs by predicting the genetic potential of individuals using genome-wide markers.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009).

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-