terclim by ICS banner
IVES 9 IVES Conference Series 9 NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Abstract

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61. Genome wide analyses and functional assays permitted to reconstruct a hierarchical intra-family regulatory network in which most of the selected NACs resulted as transcriptional activators of other NACs. Moreover, to investigate the common regulative role of the selected NACs on the grapevine transcriptome, all the annotated V. vinifera genes were listed and the most represented genes between all the DAP-seq results were identified. Interestingly, at the top of the ranking we found many genes related to maturation and senescence such as an indole-3-acetic acid-amido synthetase, which could be involved in the establishment and maintenance of low IAA concentrations in ripening berries, a laccase, encoding for a phenylpropanoid pathway-related enzyme, the senescence-inducible chloroplast stay-green protein 1, triggering Chl degradation, and the UTP-glucose-1-phosphate uridylyltransferase, encoding for a carbohydrate-metabolism-related enzyme which is highly expressed in berries at veraison. All these results lay a foundation stone in understanding the genetic regulation of such a complex process as fruit ripening.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Alessandra Amato1, Luis Orduña2, Chiara Fattorini1, Erica D’Incà1, Nicola Vitulo1, José Tomás Matus2, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy.
2Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain

Contact the author*

Keywords

Berry ripening, cistrome, NAC, hierarchical intra-family network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

isUP-AgrO European project – unlocking the potential for agricultural research on an EU outmost region: boosting ISOPlexis center

The isUP-AgrO project aims to enhance the capability of ISOPlexis – Centre of Sustainable Agriculture and Food Technology, a research unit from the University of Madeira, an outermost region of Portugal.

Physico-chemical parameters as possible markers of sensory quality for ‘Barbera’ commercial red wines

Wine quality is defined by sensory and physico-chemical characteristics. In particular, sensory features are very important since they strongly condition wine acceptability by consumers. However, the evaluation of sensory quality can be subjective, unless performed by a tasting panel of experienced tasters. Therefore, it is of great relevance to establish relationships between objective chemical parameters and sensory perceptions, even though the complexity of wine composition makes it difficult. In this sense, more reliable relationships can be found for a particular wine typology or variety. The present study aimed to predict the perceived sensory quality from the physico-chemical parameters of ‘Barbera d’Asti’ DOCG red wines (Italy).

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.

Vite e territorio. Il caso della Franciacorta nel medioevo

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments