terclim by ICS banner
IVES 9 IVES Conference Series 9 NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Abstract

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61. Genome wide analyses and functional assays permitted to reconstruct a hierarchical intra-family regulatory network in which most of the selected NACs resulted as transcriptional activators of other NACs. Moreover, to investigate the common regulative role of the selected NACs on the grapevine transcriptome, all the annotated V. vinifera genes were listed and the most represented genes between all the DAP-seq results were identified. Interestingly, at the top of the ranking we found many genes related to maturation and senescence such as an indole-3-acetic acid-amido synthetase, which could be involved in the establishment and maintenance of low IAA concentrations in ripening berries, a laccase, encoding for a phenylpropanoid pathway-related enzyme, the senescence-inducible chloroplast stay-green protein 1, triggering Chl degradation, and the UTP-glucose-1-phosphate uridylyltransferase, encoding for a carbohydrate-metabolism-related enzyme which is highly expressed in berries at veraison. All these results lay a foundation stone in understanding the genetic regulation of such a complex process as fruit ripening.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Alessandra Amato1, Luis Orduña2, Chiara Fattorini1, Erica D’Incà1, Nicola Vitulo1, José Tomás Matus2, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy.
2Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain

Contact the author*

Keywords

Berry ripening, cistrome, NAC, hierarchical intra-family network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

Copper reduction strategy for sangiovese in organic viticulture

Organic viticulture requires copper based treatments for bunch protection even though an intensive employment is no longer admitted because of its low leaching and phytotoxicity in the soil. UE Reg. 1981/2018 set copper employment to 4 kg/ha for year or 28 during 7 years with an absolute level allowed of 6 Kg/ha although those limits were decreased frequently.

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Le cuivre sur raisins et moûts: dosage et intérêts de la mesure

Avec l’accroissement des surfaces viticoles conduites en Bio, la question de l’impact de la présence de résidus de cuivre (seul anti fongique autorisé dans l’UE dans ce cadre Règlementaire) sur le déroulement des fermentations et sur les qualités œnologiques et organoleptiques des vins s’est révélée de plus en plus cruciale.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties