terclim by ICS banner
IVES 9 IVES Conference Series 9 NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Abstract

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61. Genome wide analyses and functional assays permitted to reconstruct a hierarchical intra-family regulatory network in which most of the selected NACs resulted as transcriptional activators of other NACs. Moreover, to investigate the common regulative role of the selected NACs on the grapevine transcriptome, all the annotated V. vinifera genes were listed and the most represented genes between all the DAP-seq results were identified. Interestingly, at the top of the ranking we found many genes related to maturation and senescence such as an indole-3-acetic acid-amido synthetase, which could be involved in the establishment and maintenance of low IAA concentrations in ripening berries, a laccase, encoding for a phenylpropanoid pathway-related enzyme, the senescence-inducible chloroplast stay-green protein 1, triggering Chl degradation, and the UTP-glucose-1-phosphate uridylyltransferase, encoding for a carbohydrate-metabolism-related enzyme which is highly expressed in berries at veraison. All these results lay a foundation stone in understanding the genetic regulation of such a complex process as fruit ripening.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Alessandra Amato1, Luis Orduña2, Chiara Fattorini1, Erica D’Incà1, Nicola Vitulo1, José Tomás Matus2, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy.
2Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain

Contact the author*

Keywords

Berry ripening, cistrome, NAC, hierarchical intra-family network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

Monitoring the establishment of a synthetic microbial community with a potential biocontrol activity against grapevine downy mildew using a microfluidic qPCR chip

Grapevine downy mildew, caused by the oomycete Plasmopara viticola, is responsible for significant economic losses each year and for a large proportion of the fungicides used in viticulture.

Foldable lyre as an alternative to improve yield and oenological potential of grapes for a sustainable viticulture

Actually, many countries around the world are studying different strategies for adapting winegrowing regions to climate changes, focusing on a sustainable viticulture.

Metschnikowia pulcherrima: A valuable microbial bioresource from wine for smart agrifood

The yeast Metschnikowia pulcherrima is a microorganism of great biotechnological interest, both for improving winemaking processes and for other applications outside the wine supply chain.