terclim by ICS banner
IVES 9 IVES Conference Series 9 NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Abstract

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61. Genome wide analyses and functional assays permitted to reconstruct a hierarchical intra-family regulatory network in which most of the selected NACs resulted as transcriptional activators of other NACs. Moreover, to investigate the common regulative role of the selected NACs on the grapevine transcriptome, all the annotated V. vinifera genes were listed and the most represented genes between all the DAP-seq results were identified. Interestingly, at the top of the ranking we found many genes related to maturation and senescence such as an indole-3-acetic acid-amido synthetase, which could be involved in the establishment and maintenance of low IAA concentrations in ripening berries, a laccase, encoding for a phenylpropanoid pathway-related enzyme, the senescence-inducible chloroplast stay-green protein 1, triggering Chl degradation, and the UTP-glucose-1-phosphate uridylyltransferase, encoding for a carbohydrate-metabolism-related enzyme which is highly expressed in berries at veraison. All these results lay a foundation stone in understanding the genetic regulation of such a complex process as fruit ripening.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Alessandra Amato1, Luis Orduña2, Chiara Fattorini1, Erica D’Incà1, Nicola Vitulo1, José Tomás Matus2, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy.
2Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain

Contact the author*

Keywords

Berry ripening, cistrome, NAC, hierarchical intra-family network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

Alcohol preference and health behaviors in patients with cardiometabolic diseases: insights from the multi-center iact cross-sectional study

Recognizing the influence of alcohol preference on health behaviors is essential for developing tailored interventions that effectively promote healthier lifestyles and optimize disease management strategies in the vulnerable population of patients with cardiometabolic diseases (CMD). The present study aims to provide valuable insights into how alcohol preference relates to dietary habits and medication adherence among patients with CMD diseases.

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.

Hexose efflux from the peeled grape berry

After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases