terclim by ICS banner
IVES 9 IVES Conference Series 9 NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Abstract

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61. Genome wide analyses and functional assays permitted to reconstruct a hierarchical intra-family regulatory network in which most of the selected NACs resulted as transcriptional activators of other NACs. Moreover, to investigate the common regulative role of the selected NACs on the grapevine transcriptome, all the annotated V. vinifera genes were listed and the most represented genes between all the DAP-seq results were identified. Interestingly, at the top of the ranking we found many genes related to maturation and senescence such as an indole-3-acetic acid-amido synthetase, which could be involved in the establishment and maintenance of low IAA concentrations in ripening berries, a laccase, encoding for a phenylpropanoid pathway-related enzyme, the senescence-inducible chloroplast stay-green protein 1, triggering Chl degradation, and the UTP-glucose-1-phosphate uridylyltransferase, encoding for a carbohydrate-metabolism-related enzyme which is highly expressed in berries at veraison. All these results lay a foundation stone in understanding the genetic regulation of such a complex process as fruit ripening.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Chiara Foresti1*, Alessandra Amato1, Luis Orduña2, Chiara Fattorini1, Erica D’Incà1, Nicola Vitulo1, José Tomás Matus2, Sara Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy.
2Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain

Contact the author*

Keywords

Berry ripening, cistrome, NAC, hierarchical intra-family network

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The Pampa and the vineyard: gaucho´s natural and symbolic aspects in the identity´s constitution of “Vinhos da Campanha”’s terroir – RS/Brasil

The wine region of “Vinhos da Campanha” is located in southern Brazil, on the Uruguay borderline. The colonization’s process in the region was characterized by territorial disputes between Portuguese

Analysis of temporal variability of cv. Tempranillo phenology within Ribera del Duero Do (Spain) and relationships with climatic characteristics

The Ribera del Duero Designation of Origin (DO) has acquired great recognition during the last decades, being considered one of the highest quality wine producing regions in the world. This DO has grown from 6,460 ha of vineyards officially registered in 1985 to approximately 21,500 ha in 2013. The total grape production stands at around 90 million kg, with an average yield that approaches nearly 4,500 kg/ha. Most vineyards are cultivated under rainfed conditions.

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Water relations, growth and yield of grapevines in Portugal’s Douro wine region

The hot and dry climate of the Demarcated Region of Douro (DRD), Portugal, particularly during the summer, induces soil water deficits that influence the growth and development of grapevines.

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling