terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Abstract

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor. CCN2 exhibited flowers of type 1 (masculinized) and 2 (intermediate), while CCBA exhibited only type 3 (hermaphrodite) flowers, as expected. CCN2 averaged more than 55% of type 1 flowers per cluster, which were predominant in the proximal position (63%), gradually diminishing towards distal positions. This distribution correlates with low fruit set rates towards proximal positions. In CCN2, a high percentage of inflorescence abscission per plant (avg. 50%) was observed, starting in stage EL-27. This phenomenon was not observed in CCBA. Additionally, histological sections of flowers at different developmental stages were performed. In type 1 flowers of CCN2, style and stigma tissues exhibited null development with atrophied ovules; these structures were present although poorly developed in type 2 flowers, potentially producing the few berries per cluster observed at harvest. Overall, the studied floral mutation identified in CCN2, strongly affects the development of female reproductive tissues and organs, drastically hindering fruit-set rate and cluster production.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tomás Oroño1*, Rocío Torres2, Agustín Sanguinetti3, Claudio Muñoz1,4, Sebastián Gomez-Talquenca2, Luciano Calderón1, Diego Lijavetzky1

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2EEA Mendoza INTA, San Martin 3853, 5507, Luján de Cuyo, Mendoza, Argentina.
3Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET).
4Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Almirante, Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina

Contact the author*

Keywords

floral mutation, masculinization, inflorescence abortion, fruit set, histological analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Produced since 1998, the De Martino Single Vineyard Carmenère is the first Carmenère Icon wine of Chile. The grapes are coming form a plot of 11 ha in Isla de Maipo, where the technicians of the winery have developed knowledge of their work, resulting in 3 levels of quality of the grapes.

In search of the taste of terroir – a challenge for sensory science

The definition of terroir has evolved throughout history, from something clearly negative in the XVIth-XVIIIth century to a complex multi-parametric construct with positive connotations but also with many scientific unknowns. Terroir has always been linked more or less explicitly to the sensory properties of the resulting products.

Implementation of hyperspectral image analysis for evaluating table grape quality on bunch and berry level

Typically, subjective, and visual methods are used by grape growers to assess harvest maturity. These methods may not accurately represent the maturity of an entire vineyard – especially if extensive and representative sampling was not used. New technologies have been investigated for improved harvest management decisions. Spectroscopy methods utilizing the near-infrared region of the light spectrum is one such technology investigated as an alternative to classic methods and particularly the application of hyperspectral imaging (HSI) has recently gained attention in research. HIS is a spectroscopic technique that obtains hundreds of images at different wavelengths collecting spectral data for each pixel in the sample i.e., providing both spectral and spatial data.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.