terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Abstract

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor. CCN2 exhibited flowers of type 1 (masculinized) and 2 (intermediate), while CCBA exhibited only type 3 (hermaphrodite) flowers, as expected. CCN2 averaged more than 55% of type 1 flowers per cluster, which were predominant in the proximal position (63%), gradually diminishing towards distal positions. This distribution correlates with low fruit set rates towards proximal positions. In CCN2, a high percentage of inflorescence abscission per plant (avg. 50%) was observed, starting in stage EL-27. This phenomenon was not observed in CCBA. Additionally, histological sections of flowers at different developmental stages were performed. In type 1 flowers of CCN2, style and stigma tissues exhibited null development with atrophied ovules; these structures were present although poorly developed in type 2 flowers, potentially producing the few berries per cluster observed at harvest. Overall, the studied floral mutation identified in CCN2, strongly affects the development of female reproductive tissues and organs, drastically hindering fruit-set rate and cluster production.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tomás Oroño1*, Rocío Torres2, Agustín Sanguinetti3, Claudio Muñoz1,4, Sebastián Gomez-Talquenca2, Luciano Calderón1, Diego Lijavetzky1

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2EEA Mendoza INTA, San Martin 3853, 5507, Luján de Cuyo, Mendoza, Argentina.
3Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET).
4Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Almirante, Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina

Contact the author*

Keywords

floral mutation, masculinization, inflorescence abortion, fruit set, histological analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Classification of the wine-growing environment of Central Mancha (Spain). First works

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging.