terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Abstract

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor. CCN2 exhibited flowers of type 1 (masculinized) and 2 (intermediate), while CCBA exhibited only type 3 (hermaphrodite) flowers, as expected. CCN2 averaged more than 55% of type 1 flowers per cluster, which were predominant in the proximal position (63%), gradually diminishing towards distal positions. This distribution correlates with low fruit set rates towards proximal positions. In CCN2, a high percentage of inflorescence abscission per plant (avg. 50%) was observed, starting in stage EL-27. This phenomenon was not observed in CCBA. Additionally, histological sections of flowers at different developmental stages were performed. In type 1 flowers of CCN2, style and stigma tissues exhibited null development with atrophied ovules; these structures were present although poorly developed in type 2 flowers, potentially producing the few berries per cluster observed at harvest. Overall, the studied floral mutation identified in CCN2, strongly affects the development of female reproductive tissues and organs, drastically hindering fruit-set rate and cluster production.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tomás Oroño1*, Rocío Torres2, Agustín Sanguinetti3, Claudio Muñoz1,4, Sebastián Gomez-Talquenca2, Luciano Calderón1, Diego Lijavetzky1

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2EEA Mendoza INTA, San Martin 3853, 5507, Luján de Cuyo, Mendoza, Argentina.
3Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET).
4Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Almirante, Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina

Contact the author*

Keywords

floral mutation, masculinization, inflorescence abortion, fruit set, histological analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

Unprecedented rainfall in northern Portugal

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils.