terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

Abstract

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor. CCN2 exhibited flowers of type 1 (masculinized) and 2 (intermediate), while CCBA exhibited only type 3 (hermaphrodite) flowers, as expected. CCN2 averaged more than 55% of type 1 flowers per cluster, which were predominant in the proximal position (63%), gradually diminishing towards distal positions. This distribution correlates with low fruit set rates towards proximal positions. In CCN2, a high percentage of inflorescence abscission per plant (avg. 50%) was observed, starting in stage EL-27. This phenomenon was not observed in CCBA. Additionally, histological sections of flowers at different developmental stages were performed. In type 1 flowers of CCN2, style and stigma tissues exhibited null development with atrophied ovules; these structures were present although poorly developed in type 2 flowers, potentially producing the few berries per cluster observed at harvest. Overall, the studied floral mutation identified in CCN2, strongly affects the development of female reproductive tissues and organs, drastically hindering fruit-set rate and cluster production.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Tomás Oroño1*, Rocío Torres2, Agustín Sanguinetti3, Claudio Muñoz1,4, Sebastián Gomez-Talquenca2, Luciano Calderón1, Diego Lijavetzky1

1Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Almirante Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina
2EEA Mendoza INTA, San Martin 3853, 5507, Luján de Cuyo, Mendoza, Argentina.
3Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET).
4Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Almirante, Brown 500, M5528AHB. Chacras de Coria, Mendoza, Argentina

Contact the author*

Keywords

floral mutation, masculinization, inflorescence abortion, fruit set, histological analysis

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler.

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

New oenological technology for adaptation to climate change: reduction of alcohol content during wine fermentation through stripping, with fermentative CO2

The capture and valorization of fermentative CO2 have been developed for several years by the company w platform for internal uses, notably in the cellars: inerting, cooling, reduction of water consumption, extraction, with aroma valorization. In a context of climatic warming during the vegetative cycle, grapes are currently harvested with a significant sugar concentration, a phenomenon that is expected to intensify in the coming decades. The high alcohol content of the resulting wines goes against the demand of customers who are seeking high-quality wines with less alcohol.

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.