terclim by ICS banner
IVES 9 IVES Conference Series 9 Genome wide association mapping of phenology related traits in Vitis vinifera L

Genome wide association mapping of phenology related traits in Vitis vinifera L

Abstract

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered. Cultivars were phenotyped for flowering time and veraison time along 11 years. Flowering-veraison intervals were also derived and distribution for all traits was inspected and eventually corrected. For this analysis we have built a genetic dataset including 6679 SNPs. SNPs were either recovered from litterature or integrated by genotyping through grapevine Illumina SNPChip 18K and used for evaluating the genetic structure. MLM analysis conducted independently for the three different phenological traits identified a list of few significantly associated SNPs. Among the three traits flowering time yielded the highest number of associated SNPs. For each trait SNPs consistently associated across more years were found. Moreover partially overlapping SNPs associated both to veraison time and flowering-veraison time interval were found. Interestingly most of the associated SNPs co-localized with QTL regions already known either for flowering or veraison traits in grapevine. Putative candidate genes underlying such regions are discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giada Bolognesi1, Pietro Delfino1, Chiara Broccanello1, Riccardo Mora1, Martina Marini1, 2, Massimo Gardiman2, Mirella Giust2, Diego Tomasi2, Manna Crespan2, Diana Bellin1*

1Department of Biotechnology, University of Verona, Verona, Italy
2 CREA Research Centre for Viticulture and Enology, Conegliano (TV), Italy

Contact the author*

Keywords

Climate change, GWAS, phenology, candidate genes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Italy sweet revolution: how club grapes are transforming the table grape market

Italy is the leader table grape producer country in Europe and the eighth worldwide (OIV, 2021). The italian production area is sized at approximately 47,248 hectares with a production of 9.66 million quintals of grapes. Apulia and sicily are the main producing italian regions which collectively account for over the 90% of the italian production area (istat, 2022).

Shift of Nitrogen Resources by biotic interaction in grapevine

Grape phylloxera (Daktulosphaira vitifoliae Fitch), a monophagous pest of the grapevine, induces nodosities on the roots through its sap-sucking activity.

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.

Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Les images de très haute résolution spatiale sont utilisées depuis peu en viticulture comme une aide à la cartographie des zones de vendanges. A partir d’images multispectrales de très haute résolution spatiale IKONOS (résolution 4 m) et SPOT-5 en supermode (résolution 2.5 m), on propose ici une démarche de segmentation d’une région de vignoble en zones de vendanges.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).