terclim by ICS banner
IVES 9 IVES Conference Series 9 Genome wide association mapping of phenology related traits in Vitis vinifera L

Genome wide association mapping of phenology related traits in Vitis vinifera L

Abstract

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered. Cultivars were phenotyped for flowering time and veraison time along 11 years. Flowering-veraison intervals were also derived and distribution for all traits was inspected and eventually corrected. For this analysis we have built a genetic dataset including 6679 SNPs. SNPs were either recovered from litterature or integrated by genotyping through grapevine Illumina SNPChip 18K and used for evaluating the genetic structure. MLM analysis conducted independently for the three different phenological traits identified a list of few significantly associated SNPs. Among the three traits flowering time yielded the highest number of associated SNPs. For each trait SNPs consistently associated across more years were found. Moreover partially overlapping SNPs associated both to veraison time and flowering-veraison time interval were found. Interestingly most of the associated SNPs co-localized with QTL regions already known either for flowering or veraison traits in grapevine. Putative candidate genes underlying such regions are discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giada Bolognesi1, Pietro Delfino1, Chiara Broccanello1, Riccardo Mora1, Martina Marini1, 2, Massimo Gardiman2, Mirella Giust2, Diego Tomasi2, Manna Crespan2, Diana Bellin1*

1Department of Biotechnology, University of Verona, Verona, Italy
2 CREA Research Centre for Viticulture and Enology, Conegliano (TV), Italy

Contact the author*

Keywords

Climate change, GWAS, phenology, candidate genes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Using a grape compositional model to predict harvest time and influence wine style

Linking wine composition to fruit composition is difficult due to the numerous biochemical pathways and substrate transformations that occur during fermentation

Key odorants responsible for the sensory spaces defining the different aroma potentials of Grenache and Tempranillo grapes

There are yet many gaps in our knowledge about the aroma potential of winemaking grapes and its measurement. Trying to bring some light into this question, a new general strategy based on the accelerated hydrolysis of reconstituted phenolic and aromatic fractions (PAFs) extracted from grapes has been developed

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

The impact of differences in soil texture within a vineyard on vine development and wine quality

Marlborough Sauvignon Blanc has rapidly gained an international reputation for style and quality. The extent to which this can be attributed to the climate, soils or vineyard management is at present unclear. However, the young alluvial soils of the Wairau Plains are considered to play an important role in determining this unique wine style. Marked changes in soil texture occur on the Wairau Plains over short distances.

Climat et sol: critères d’évaluation et effets sur le comportement de la vigne

Le zonage viticole aborde en premier lieu la caractérisation des macroclimats aux échelles des grandes régions, pays, continents ou monde (géoviticulture).