terclim by ICS banner
IVES 9 IVES Conference Series 9 Genome wide association mapping of phenology related traits in Vitis vinifera L

Genome wide association mapping of phenology related traits in Vitis vinifera L

Abstract

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered. Cultivars were phenotyped for flowering time and veraison time along 11 years. Flowering-veraison intervals were also derived and distribution for all traits was inspected and eventually corrected. For this analysis we have built a genetic dataset including 6679 SNPs. SNPs were either recovered from litterature or integrated by genotyping through grapevine Illumina SNPChip 18K and used for evaluating the genetic structure. MLM analysis conducted independently for the three different phenological traits identified a list of few significantly associated SNPs. Among the three traits flowering time yielded the highest number of associated SNPs. For each trait SNPs consistently associated across more years were found. Moreover partially overlapping SNPs associated both to veraison time and flowering-veraison time interval were found. Interestingly most of the associated SNPs co-localized with QTL regions already known either for flowering or veraison traits in grapevine. Putative candidate genes underlying such regions are discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giada Bolognesi1, Pietro Delfino1, Chiara Broccanello1, Riccardo Mora1, Martina Marini1, 2, Massimo Gardiman2, Mirella Giust2, Diego Tomasi2, Manna Crespan2, Diana Bellin1*

1Department of Biotechnology, University of Verona, Verona, Italy
2 CREA Research Centre for Viticulture and Enology, Conegliano (TV), Italy

Contact the author*

Keywords

Climate change, GWAS, phenology, candidate genes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

European consumer preference for wines made from fungus resistant grape varieties

Fungus resistant grape varieties (FRGV or PIWI) offer many benefits such as less pesticide use or premium prices for enhanced sustainability. Still, winemakers are concerned about inferior wine quality. This study evaluates how European wine consumers assess wines made from new FRGVs in comparison to traditional V. vinifera varieties. Most of them were grown in the same vineyard. Four white (Calardis Blanc, Muscaris, Sauvignac, Cabernet Blanc) und three red (Satin Noir, Cabernet Cortis, Laurot) FRGV were compared to Riesling, Sauvignon blanc, Muskateller, Cab. Sauvignon and Merlot. For each FRGV, different styles were vinified using standardized protocols.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

Using atmospheric and statistical models to understand local climate and assess spatial temperature variability at a fine scale over the Stellenbosch wine district, South Africa

Atmospheric and statistical models were used to increase understanding of potential climatic impacts, resulting from mesoscale physical processes that cause significant temperature variability for viticulture within the Stellenbosch Wine of Origin district. Hourly temperature values from 16 automatic weather stations and 40 tinytag data loggers located in the vineyards were analysed.