terclim by ICS banner
IVES 9 IVES Conference Series 9 Genome wide association mapping of phenology related traits in Vitis vinifera L

Genome wide association mapping of phenology related traits in Vitis vinifera L

Abstract

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered. Cultivars were phenotyped for flowering time and veraison time along 11 years. Flowering-veraison intervals were also derived and distribution for all traits was inspected and eventually corrected. For this analysis we have built a genetic dataset including 6679 SNPs. SNPs were either recovered from litterature or integrated by genotyping through grapevine Illumina SNPChip 18K and used for evaluating the genetic structure. MLM analysis conducted independently for the three different phenological traits identified a list of few significantly associated SNPs. Among the three traits flowering time yielded the highest number of associated SNPs. For each trait SNPs consistently associated across more years were found. Moreover partially overlapping SNPs associated both to veraison time and flowering-veraison time interval were found. Interestingly most of the associated SNPs co-localized with QTL regions already known either for flowering or veraison traits in grapevine. Putative candidate genes underlying such regions are discussed.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Giada Bolognesi1, Pietro Delfino1, Chiara Broccanello1, Riccardo Mora1, Martina Marini1, 2, Massimo Gardiman2, Mirella Giust2, Diego Tomasi2, Manna Crespan2, Diana Bellin1*

1Department of Biotechnology, University of Verona, Verona, Italy
2 CREA Research Centre for Viticulture and Enology, Conegliano (TV), Italy

Contact the author*

Keywords

Climate change, GWAS, phenology, candidate genes

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Wine quality is influenced by grape maturity, typically monitored by measuring sugar content and acidity.

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.
The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC.