Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Abstract

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability. The ability of the wine sector to adapt to climate change is largely constrained in a relatively consistent manner across the world, with very similar barriers being identified in several countries (Aus, USA, Por, Ita, Esp). The most important of these include accessibility to meaningful predictive climate data projections, the capacity and ability to use the predictive data, and the identification of relevant and practical adaptation response actions. The authors are proposing the development of a simple guide to possible response actions based on a hazard risk analysis and a control point approach that will incorporate a wide range of viti-vinicultural climate types and terroirs. The guide will constitute a framework that can be upgraded as new adaptation options become uncovered through research and practical experience relevant to each region, thereby allowing individual regions to better define their own relevant adaptation strategies. A preliminary framework covering a sample section of the value chain will be presented for discussion.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Mark Gishen (1), Antonio R. Graça (2), Gregory V. Jones (3)

(1) Principal Consultant, Gishen Consulting, 261 Carrington Street, Adelaide SA 5000, Australia
(2) Head of Research & Development, Sogrape Vinhos, S.A., Aldeia Nova 4430 – 809 Avintes, Portugal
(3) Director & Professor of Environmental Science and Policy, Division of Business, Communication, and the Environment, Southern Oregon University, 142 Central Hall, 1250 Siskiyou Blvd., Ashland, OR, 97520, USA

Contact the author

Keywords

climate change, impacts, terroir, adaptation, global framework

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.