Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Abstract

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability. The ability of the wine sector to adapt to climate change is largely constrained in a relatively consistent manner across the world, with very similar barriers being identified in several countries (Aus, USA, Por, Ita, Esp). The most important of these include accessibility to meaningful predictive climate data projections, the capacity and ability to use the predictive data, and the identification of relevant and practical adaptation response actions. The authors are proposing the development of a simple guide to possible response actions based on a hazard risk analysis and a control point approach that will incorporate a wide range of viti-vinicultural climate types and terroirs. The guide will constitute a framework that can be upgraded as new adaptation options become uncovered through research and practical experience relevant to each region, thereby allowing individual regions to better define their own relevant adaptation strategies. A preliminary framework covering a sample section of the value chain will be presented for discussion.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Mark Gishen (1), Antonio R. Graça (2), Gregory V. Jones (3)

(1) Principal Consultant, Gishen Consulting, 261 Carrington Street, Adelaide SA 5000, Australia
(2) Head of Research & Development, Sogrape Vinhos, S.A., Aldeia Nova 4430 – 809 Avintes, Portugal
(3) Director & Professor of Environmental Science and Policy, Division of Business, Communication, and the Environment, Southern Oregon University, 142 Central Hall, 1250 Siskiyou Blvd., Ashland, OR, 97520, USA

Contact the author

Keywords

climate change, impacts, terroir, adaptation, global framework

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

The potential of new selection and indigenous grape varieties for sparkling wine production

In the context of climate change, it is essential to provide producers with alternatives based on local grape varieties capable of meeting modern quality and sustainability requirements.

The effects of perennial cover crop management on soil temperature and vine water status

The implications of perennial cover crop management on vine vigor and yield have been well documented. However, whereas multiple studies show that cover crop management affects grapevine dry matter production, water, and nutrient status, the specific effects of a new hybrid perennial cover crop on soil temperature and its relationship to vine water status in vineyards has not been explored. This study will compare 3 different perennial cover crop combinations and tillage practices with a no-till seeding of a new hybrid perennial, Poa bulbosa (Pb).