terclim by ICS banner
IVES 9 IVES Conference Series 9 Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

Abstract

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.
To explore this potential, we conducted a comprehensive study on 30 ‘Tempranillo Tinto’ clones, chosen from a wide selection of 729 clones in the Rioja winemaking region of Spain. The focus was on characterizing four key phenological stages (budburst, full flowering, veraison, and harvest), for each clone over three consecutive seasons (2020-2022). Results revealed substantial differences among the studied clones, particularly in the duration of their vegetative cycle. Thus, whilst some early clones reached full maturity as early as September, others needed to be harvested at the end of the same month. The most significant difference among clones was observed in the interval between veraison and harvest dates, varying by up to 27 days. In conclusion, our findings suggest that clonal diversity in phenological traits can be an effective strategy to address varietal limitations towards climate conditions. This approach allows for the preservation of the typicity and added value conferred by ancient elite varieties in traditional winemaking regions, without the necessity of switching cultivars.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Javier Portu*, Luis Rivacoba, Sergio Ibáñez, Ignacio Martín, Javier Tello, Alicia Pou, Erika Herce, Álvaro Galán, Elisa Baroja

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja)

Contact the author*

Keywords

climate change, phenology, late ripening, budburst, harvest

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Se justifica la utilización de los mapas de suelos detallados y muy detallados como instrumento fundamental en los estudios de microzonificación.

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized.