terclim by ICS banner
IVES 9 IVES Conference Series 9 Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

Abstract

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.
To explore this potential, we conducted a comprehensive study on 30 ‘Tempranillo Tinto’ clones, chosen from a wide selection of 729 clones in the Rioja winemaking region of Spain. The focus was on characterizing four key phenological stages (budburst, full flowering, veraison, and harvest), for each clone over three consecutive seasons (2020-2022). Results revealed substantial differences among the studied clones, particularly in the duration of their vegetative cycle. Thus, whilst some early clones reached full maturity as early as September, others needed to be harvested at the end of the same month. The most significant difference among clones was observed in the interval between veraison and harvest dates, varying by up to 27 days. In conclusion, our findings suggest that clonal diversity in phenological traits can be an effective strategy to address varietal limitations towards climate conditions. This approach allows for the preservation of the typicity and added value conferred by ancient elite varieties in traditional winemaking regions, without the necessity of switching cultivars.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Javier Portu*, Luis Rivacoba, Sergio Ibáñez, Ignacio Martín, Javier Tello, Alicia Pou, Erika Herce, Álvaro Galán, Elisa Baroja

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja)

Contact the author*

Keywords

climate change, phenology, late ripening, budburst, harvest

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Effet terroir et arômes des muscats

L’étude porte sur trois terroirs du Roussillon, classés dans l’A.O.C. Muscat de Rivesaltes et concerne les 2 cépages de cette appellation : le muscat à petits grains et le muscat d’Alexandrie. Elle a pour objectif de connaître pour un terroir donné le meilleur choix de cépage.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

Smoke exposure effects on red wines: how much is too much?

Increasing wildfire frequency in the United States has led to the indirect impact of smoke in vineyards, affecting grape quality and wine sensory attributes, commonly called “smoke taint”.

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.