terclim by ICS banner
IVES 9 IVES Conference Series 9 Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

Intra-varietal diversity in cv. ‘Tempranillo Tinto’: phenological stages

Abstract

‘Tempranillo Tinto’ is one of the most relevant grapevine cultivars worldwide. Despite its early ripening and relatively short vegetative cycle, which may not be ideal for high-quality grape and wine production in warming conditions, its long-standing cultivation has led to an intense multiplication by cuttings, which originated the high level of clonal variation currently available. Now, this intra-varietal diversity provides an interesting opportunity for cultivar improvement by identifying genotypes with better adaptation potential.
To explore this potential, we conducted a comprehensive study on 30 ‘Tempranillo Tinto’ clones, chosen from a wide selection of 729 clones in the Rioja winemaking region of Spain. The focus was on characterizing four key phenological stages (budburst, full flowering, veraison, and harvest), for each clone over three consecutive seasons (2020-2022). Results revealed substantial differences among the studied clones, particularly in the duration of their vegetative cycle. Thus, whilst some early clones reached full maturity as early as September, others needed to be harvested at the end of the same month. The most significant difference among clones was observed in the interval between veraison and harvest dates, varying by up to 27 days. In conclusion, our findings suggest that clonal diversity in phenological traits can be an effective strategy to address varietal limitations towards climate conditions. This approach allows for the preservation of the typicity and added value conferred by ancient elite varieties in traditional winemaking regions, without the necessity of switching cultivars.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Javier Portu*, Luis Rivacoba, Sergio Ibáñez, Ignacio Martín, Javier Tello, Alicia Pou, Erika Herce, Álvaro Galán, Elisa Baroja

Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja, CSIC, Universidad de La Rioja)

Contact the author*

Keywords

climate change, phenology, late ripening, budburst, harvest

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics

Gas Chromatography-Olfactometry (GCO) screening of odorant compounds associated with the tails-off flavour in wine distillates

The development of off-flavours in wine distillates, particularly those associated with the tails fraction, is a key issue in the production of high-quality spirits.

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.