terclim by ICS banner
IVES 9 IVES Conference Series 9 Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Abstract

The objective of the present work was to study the influence of the foliar application of seaweed (Laminaria japonica), on the bunch and on the must in the ‘Cabernet Sauvignon’ grape. The experiment was carried out in the years 2021/2022, in a 21-year-old commercial vineyard, in the municipality of “Dom Pedrito” – “Rio Grande do Sul” (RS). A completely randomized experimental design was used, with 4 treatments and 4 replications (7 plants per replication). The treatments were: T1- control treatment; T2- Exal Powder 5 g L-1; T3- Hidro Exal 15 ml L-1; T4- Exal Powder 5 g L-1+ Hidro Exal 15 ml L-1. Six applications were performed (every 15 days). The following were evaluated in the bunch: length (cm), width (cm), weight (g) and number of berries. Using the WineScanTM SO2 equipment (FOSS®, Denmark), the following were evaluated in the must: sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia (mg L-1), potassium content (mg L-1). For all treatments and all variables analyzed, no statistical difference was obtained. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) did not influence the analyzed characteristics of the bunch and must of the ‘Cabernet Sauvignon’ vines.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Darla Corrêa Machado1, Joana Darque Ribeiro Ozorio1, Elizete Beatriz Radmann1, Wellynthon Machado da Cunha1, Jansen Moreira Silveira1, Lília Sichmann Heiffig-del Aguila2

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic viticulture, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Application of zoning for wine production, digitalisation and traceability

Depuis la création des outils d’amélioration et de suivi de la qualité, le CREDO développe et réalise des zonages de potentialités viticoles.

Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Spatial variability of vine productivity in winegrapes is important to characterise as both yield and quality are relevant for the production of different wine styles and products. The objectives were to understand how patterns of variability of Cabernet Sauvignon fruit composition changed over time and space, how these patterns could be characterised with indirect measurements, and how spatial patterns of the variation in fruit compositional attributes can aid in improving management. Prior to the 2017 vintage, 125 data vines were distributed across each of four vineyards in the Lodi American Viticultural Area (AVA) of California. Each data vine was sampled at commercial harvest in 2017, 2018, and 2019. Yield components and fruit composition were measured at harvest for each data vine, and maps of yield and fruit composition were produced for eight ‘objective measures of fruit quality’: total anthocyanins, polymeric tannins, quercetin glycosides, malic acid, yeast assimilable nitrogen, β-damascenone, C6 alcohols and aldehydes, and 3-isobutyl-2-methoxypyrazine. Patterns of variation in anthocyanins and phenolic compounds were found to be most stable over time. Given this relative stability, management decisions focused on fruit quality could be based on zonal descriptions of anthocyanins or phenolics to increase profitability in some vineyards. In each vineyard, dormant season pruning weights and soil cores were collected at each location, elevation and soil apparent electrical conductivity surveys were completed, and remotely sensed imagery was captured by fixed wing aircraft and two satellite platforms at major phenological stages. The data collected were used to develop relationships among biophysical data, soil, imagery, and fruit composition. The standardised and aggregated samples from four vineyards over three seasons were included in the estimation of ‘common variograms’ to assess how this technique could aid growers in producing geostatistically rigorous maps of fruit composition variability without cumbersome, single season sampling efforts.

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.