terclim by ICS banner
IVES 9 IVES Conference Series 9 Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Abstract

The objective of the present work was to study the influence of the foliar application of seaweed (Laminaria japonica), on the bunch and on the must in the ‘Cabernet Sauvignon’ grape. The experiment was carried out in the years 2021/2022, in a 21-year-old commercial vineyard, in the municipality of “Dom Pedrito” – “Rio Grande do Sul” (RS). A completely randomized experimental design was used, with 4 treatments and 4 replications (7 plants per replication). The treatments were: T1- control treatment; T2- Exal Powder 5 g L-1; T3- Hidro Exal 15 ml L-1; T4- Exal Powder 5 g L-1+ Hidro Exal 15 ml L-1. Six applications were performed (every 15 days). The following were evaluated in the bunch: length (cm), width (cm), weight (g) and number of berries. Using the WineScanTM SO2 equipment (FOSS®, Denmark), the following were evaluated in the must: sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia (mg L-1), potassium content (mg L-1). For all treatments and all variables analyzed, no statistical difference was obtained. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) did not influence the analyzed characteristics of the bunch and must of the ‘Cabernet Sauvignon’ vines.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Darla Corrêa Machado1, Joana Darque Ribeiro Ozorio1, Elizete Beatriz Radmann1, Wellynthon Machado da Cunha1, Jansen Moreira Silveira1, Lília Sichmann Heiffig-del Aguila2

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic viticulture, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes

In this video recording of the IVES science meeting 2024, Silvia Motta (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, Asti, Italy) speaks about the effect of SO2, glutathione and tannins on Cortese white wine oxidative evolution after different oxygen intakes. This presentation is based on an original article accessible for free on OENO One.

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.

Drought tolerance assessment and differentiation of grapevine cultivars using physiological metrics: insights from field studies

This study aimed to validate a protocol and compare metrics for evaluating drought tolerance in two Vitis vinifera grapevine cultivars under field conditions. Various metrics were calculated to represent the physiological responses of plants to progressive water deficit. Data were collected from Sauvignon Blanc and Chardonnay plants subjected to three irrigation levels during the 2022-2023 season, along with data from three previous seasons. Hydro-escape areas were used to assess the plant’s ability to reduce water potential with decreasing soil water availability.

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.