terclim by ICS banner
IVES 9 IVES Conference Series 9 Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Abstract

The objective of the present work was to study the influence of the foliar application of seaweed (Laminaria japonica), on the bunch and on the must in the ‘Cabernet Sauvignon’ grape. The experiment was carried out in the years 2021/2022, in a 21-year-old commercial vineyard, in the municipality of “Dom Pedrito” – “Rio Grande do Sul” (RS). A completely randomized experimental design was used, with 4 treatments and 4 replications (7 plants per replication). The treatments were: T1- control treatment; T2- Exal Powder 5 g L-1; T3- Hidro Exal 15 ml L-1; T4- Exal Powder 5 g L-1+ Hidro Exal 15 ml L-1. Six applications were performed (every 15 days). The following were evaluated in the bunch: length (cm), width (cm), weight (g) and number of berries. Using the WineScanTM SO2 equipment (FOSS®, Denmark), the following were evaluated in the must: sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia (mg L-1), potassium content (mg L-1). For all treatments and all variables analyzed, no statistical difference was obtained. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) did not influence the analyzed characteristics of the bunch and must of the ‘Cabernet Sauvignon’ vines.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Darla Corrêa Machado1, Joana Darque Ribeiro Ozorio1, Elizete Beatriz Radmann1, Wellynthon Machado da Cunha1, Jansen Moreira Silveira1, Lília Sichmann Heiffig-del Aguila2

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic viticulture, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Étude de la variabilité des facteurs naturels du terroir viticole, à travers une gamme d’A.O.C. en Anjou (France)

Un programme de recherche concernant les facteurs naturels et humains des terroirs viticoles a été développé dans le vignoble A.O.C. de l’Anjou, sur une surface d’environ 30.000 Ha

Analysis of vineyard soil after mulching with municipal solid waste (MSW)-compost

The use of compost as amendment in agriculture is a well-established practice, strongly recommended for numerous benefits.

Effect of spray with autochthonous Trichoderma strains and its secondary metabolites on the quality of Tempranillo grape

Trichoderma is one of the most widely used fungal biocontrol agents on vineyards due to its multiple benefits on this crop, such as its fungicidal and growth promoting capacity. In this work, we have analyzed the effect on the concentration of nutrients in grapevine leaves and on the quality of the grape must after spraying an autochthonous strain of Trichoderma harzianum and one of the main secondary metabolites produced by this genus, 6-pentyl-α-pyrone (6PP).

Impact of grapevine rootstock genotypes on nitrogen status of the scion and phenolic composition in Pinot noir berries and wine

Context and purpose of the study. Nitrogen (N) limitation enhances the production of phenolic compounds in grapes due to the downregulation of the flavonoid biosynthesis pathway.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.