terclim by ICS banner
IVES 9 IVES Conference Series 9 Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Fertilization with Seaweed (Laminaria japonica) on the characteristics of the bunch and the quality of the grape must of ‘Cabernet Sauvignon’

Abstract

The objective of the present work was to study the influence of the foliar application of seaweed (Laminaria japonica), on the bunch and on the must in the ‘Cabernet Sauvignon’ grape. The experiment was carried out in the years 2021/2022, in a 21-year-old commercial vineyard, in the municipality of “Dom Pedrito” – “Rio Grande do Sul” (RS). A completely randomized experimental design was used, with 4 treatments and 4 replications (7 plants per replication). The treatments were: T1- control treatment; T2- Exal Powder 5 g L-1; T3- Hidro Exal 15 ml L-1; T4- Exal Powder 5 g L-1+ Hidro Exal 15 ml L-1. Six applications were performed (every 15 days). The following were evaluated in the bunch: length (cm), width (cm), weight (g) and number of berries. Using the WineScanTM SO2 equipment (FOSS®, Denmark), the following were evaluated in the must: sugars (g L-1), pH, tartaric acid (g L-1), malic acid (g L-1), gluconic acid (g L-1), ammonia (mg L-1), potassium content (mg L-1). For all treatments and all variables analyzed, no statistical difference was obtained. It is preliminarily concluded that the application of foliar fertilizer based on seaweed (Laminaria japonica) did not influence the analyzed characteristics of the bunch and must of the ‘Cabernet Sauvignon’ vines.

Acknowledgements: To the Company “Algas” América Latina Agricultura Sustentável (ALAS), in the names of its managing partners, Luis Augusto Bennemann de Souza and Fernando Carbonari Collares, for the donation of organic fertilizer composed of Marine Algae (Exal), and for the contribution with some inputs to the execution of this research.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Saavedra del Aguila1*, Darla Corrêa Machado1, Joana Darque Ribeiro Ozorio1, Elizete Beatriz Radmann1, Wellynthon Machado da Cunha1, Jansen Moreira Silveira1, Lília Sichmann Heiffig-del Aguila2

1 Federal University of Pampa (UNIPAMPA)/Campus Dom Pedrito, Bachelor’s Degree in Enology
2 Embrapa Temperate Climate

Contact the author*

Keywords

Vitis vinifera, sustainability, organic fertilizer, organic viticulture, climate change

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.