terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterizing graft union formation in different scion/rootstock combinations of grapevine 

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

Abstract

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product. However, achieving high success rates in grafting for new rootstock genotypes is imperative. This study aims to develop quantitative techniques for characterizing graft union formation in different grapevine scion/rootstock combinations. The research focuses on the initial months after grafting, examining factors such as the quantity of callus (both fresh and dry mass) and the mechanical strength of the graft union. Interestingly, the quantity of callus at the graft interface varied among genotypes and did not necessarily correlate with the mechanical strength of the graft union. Challenges in quantitatively phenotyping different stages of graft union formation have impeded the identification of genetic determinants for grafting success across plant species. To address this bottleneck, various quantitative techniques are being developed to elucidate the genetic architecture of graft union formation in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marilou Camboué1, Jean-Pascal Tandonnet1, Marine Morel1, Elisa Marguerit1, Sarah Jane Cookson1*

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

scion, rootstock, grafting, callus, mechanical strength

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vine responses to two irrigation systems in the region of Vinhos Verdes

In this work we try to know the influence of two irrigation systems (Drip and Micro – jet ) with the same levels of water applied in an experimental vineyard in the region of Felgueiras.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.

The vascular connections in grafted plants under examination

Aims: Decreasing longevity of vineyards due to the increase in the infection of different grapevine trunk diseases is a growing concern, and could be related to the quality of grafting. The main aim of this study was to evaluate the use of xylem hydraulic conductivity measurements as a potential indicator for the quality of vascular connections in

Volatile composition of base wines to obtain sparkling wines from seven autochthonous grape varieties from Castilla y León (Spain)

The aim of this work was to characterize the aromatic profile of white and rosé base wines for the elaboration of sparkling wines from seven autochthonous grape varieties of Castilla y León. The ‘Albarín’, ‘Godello’ and ‘Verdejo’ white grape cultivars contribute with more fruity notes than the ‘Viura’ and ‘Malvasía’ cultivars; and ‘Prieto picudo’ coloured grape cultivar has more fruity character than ‘Garnacha’.

Essential oil vapor triggers resistance pathways in Vitis vinifera and blocks plasmopora viticola infection

The amount of synthetic pesticides applied in viticulture is relatively high compared to other agricultural crops, due to the high sensitivity of grapevine to diseases such as downy mildew (Plasmopora viticola). Alternatives to reduce fungicides are utterly needed to promote a sustainable vineyard-ecosystems and meet consumer acceptance. Essential oils (EOs) are amongst the most promising natural plant protection agents and have shown their antifungal properties previously. However, the efficiency of EOs depends highly on timing and application technique.