terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterizing graft union formation in different scion/rootstock combinations of grapevine 

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

Abstract

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product. However, achieving high success rates in grafting for new rootstock genotypes is imperative. This study aims to develop quantitative techniques for characterizing graft union formation in different grapevine scion/rootstock combinations. The research focuses on the initial months after grafting, examining factors such as the quantity of callus (both fresh and dry mass) and the mechanical strength of the graft union. Interestingly, the quantity of callus at the graft interface varied among genotypes and did not necessarily correlate with the mechanical strength of the graft union. Challenges in quantitatively phenotyping different stages of graft union formation have impeded the identification of genetic determinants for grafting success across plant species. To address this bottleneck, various quantitative techniques are being developed to elucidate the genetic architecture of graft union formation in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marilou Camboué1, Jean-Pascal Tandonnet1, Marine Morel1, Elisa Marguerit1, Sarah Jane Cookson1*

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

scion, rootstock, grafting, callus, mechanical strength

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Yeast diversity in Vitis labrusca l. Ecosystems

Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, little is known about the diversity of yeast communities present in non-vinifera Vitis ecosystems (i.e., grapes and spontaneously fermenting grape musts). Potentially scientific and/or enological valuable yeast strains from these non-vinifera Vitis ecosystems might never be isolated from V. vinifera L. Using a standard culture-dependent strategy, we studied the population of yeast species during initial stages of spontaneous fermentation of V. labrusca L. (Isabella) grape musts. Rare non-Saccharomyces yeast species were recognized in Isabella, including Candida azymoides, Pichia cecembensis, Candida californica, Candida bentonensis, Issatchenkia hanoiensis and Candida apicola.

Text mining of wine reviews to investigate quality markers of ‘Nebbiolo’ wines from Valtellina

In Valtellina zone (north Italy), the winemaking of ‘Nebbiolo’ grapes leads to the production of two main wine types: classic red wines from fresh grapes, usually classified as Valtellina Superiore DOCG (mandatory oak aging) or Rosso di Valtellina DOC, and the Sforzato di Valtellina DOCG, which is produced using withered grapes according to traditional product specification and subjected to mandatory oak aging process. The withering process influences grape chemical composition and, in turn, the wine sensory profile, which is strongly linked to the wine quality and typicity perceived by consumers.

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

The representation of the vines: from symbol to spectacle

Landscapes such as its representation express values, beliefs and intentions of the individuals and the communities that produce them.

New insights of translocation of smoke-related volatile phenols in vivo grapevines

The increasing frequency of wildfires in grape-growing regions is seen as a significant risk for the grape and wine industry.