terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterizing graft union formation in different scion/rootstock combinations of grapevine 

Characterizing graft union formation in different scion/rootstock combinations of grapevine 

Abstract

In most viticultural regions, grapevines are cultivated grafted, employing either hybrid or pure species of various American Vitis spp., such as V. berlandieri, V. rupestris, and V. riparia, as grapevine rootstocks. These rootstocks play a crucial role in providing resistance to the Phylloxera insect pest. Beyond Phylloxera resistance, it is desirable for grapevine rootstocks to exhibit resistance to other soil-borne pathogens and adaptability to abiotic stress conditions. The introduction of new rootstocks holds promise for adapting agriculture to climate change without altering the characteristics of the final harvested product. However, achieving high success rates in grafting for new rootstock genotypes is imperative. This study aims to develop quantitative techniques for characterizing graft union formation in different grapevine scion/rootstock combinations. The research focuses on the initial months after grafting, examining factors such as the quantity of callus (both fresh and dry mass) and the mechanical strength of the graft union. Interestingly, the quantity of callus at the graft interface varied among genotypes and did not necessarily correlate with the mechanical strength of the graft union. Challenges in quantitatively phenotyping different stages of graft union formation have impeded the identification of genetic determinants for grafting success across plant species. To address this bottleneck, various quantitative techniques are being developed to elucidate the genetic architecture of graft union formation in grapevine.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Marilou Camboué1, Jean-Pascal Tandonnet1, Marine Morel1, Elisa Marguerit1, Sarah Jane Cookson1*

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

scion, rootstock, grafting, callus, mechanical strength

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels

Insufficient levels of malate and lack of acidity in commercial grape cultivars (V.vinifera) hinders the quality of fruit grown in warm climates. Conversely, excessive levels of malate and sourness in wild Vitis grape, leads to unpalatable fruit and complicates the introgression of valuable disease resistant alleles through breeding. Nonetheless, albeit decades of research, knowledge regarding the molecular regulation of malate levels in grape remains limited.

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

‘It’s a small, yappy dog’: The British idea of terroir

Aims: Most consumer research about terroir has focused on wine, particularly with French or other European wine drinkers, rather than those in the Anglo-Saxon world. In Europe, whilst there is no agreement amongst consumers as to what terroir actually is, there is a general recognition of the word and an acceptance that it represents something important