terclim by ICS banner
IVES 9 IVES Conference Series 9 An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

Abstract

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87). The different scion:rootstock combinations were planted and maintained under well-watered conditions, a 50% reduction of irrigation, as well as no irrigation (dryland). Morphological, phenological, physiological and carpological measurements were gathered in addition to soil moisture measurements and environmental monitoring. Results indicated a strong negative vegetative response to the increased water constraint, especially in vines grafted on R110.  Moreover, all of the different scion:rootstock combinations reduced stomatal conductance to conserve water use under reduced irrigation conditions. Phenological progression and ripening monitoring indicated that vines advanced their phenology when they experience recurring water constraint. A lowering in total vine yield was observed in the dryland vines, though the difference was not as pronounced in the CAB combinations. A high degree of phenotypic plasticity was observed in most plant-level measurements. The data will be discussed from the perspective of evaluating adaptability to the stressors and to draw attention to the importance of experiments where the responses to water constraint are followed from planting onwards.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Reinhard Swart1*, Anke Berry1, Stenford Matsikidze1, Philip Young1, Anscha Zietsman,Talitha Venter, Carlos Poblete-Echeverria1­­, Melané A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

adaptation, viticulture, dryland, water stress, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector.

Rară Neagră 2.0: prospecting, improving and safeguarding the biodiversity in an eastern european heritage grape variety

The Rară Neagră 2.0 project aims to restore and safeguard the intra-varietal diversity of the ancient Eastern European grape variety Rară Neagră through polyclonal selection and the establishment of a certified genetic conservatory.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins