terclim by ICS banner
IVES 9 IVES Conference Series 9 An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

Abstract

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87). The different scion:rootstock combinations were planted and maintained under well-watered conditions, a 50% reduction of irrigation, as well as no irrigation (dryland). Morphological, phenological, physiological and carpological measurements were gathered in addition to soil moisture measurements and environmental monitoring. Results indicated a strong negative vegetative response to the increased water constraint, especially in vines grafted on R110.  Moreover, all of the different scion:rootstock combinations reduced stomatal conductance to conserve water use under reduced irrigation conditions. Phenological progression and ripening monitoring indicated that vines advanced their phenology when they experience recurring water constraint. A lowering in total vine yield was observed in the dryland vines, though the difference was not as pronounced in the CAB combinations. A high degree of phenotypic plasticity was observed in most plant-level measurements. The data will be discussed from the perspective of evaluating adaptability to the stressors and to draw attention to the importance of experiments where the responses to water constraint are followed from planting onwards.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Reinhard Swart1*, Anke Berry1, Stenford Matsikidze1, Philip Young1, Anscha Zietsman,Talitha Venter, Carlos Poblete-Echeverria1­­, Melané A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

adaptation, viticulture, dryland, water stress, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Modification on grape phenolic and aromatic composition due to different leafroll virus infections

Viral diseases are reported to cause several detrimental effects on grapevine. Among them, leafroll, due to single or mixed infection of GLRaV1 and GLRaV3, and rugose wood, associated to GVA, are considered the most widespread and dangerous.

Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni blanc’ musts and wines

A new immunoassay kit, called Botrytis Lateral Flow Device has been tested to detect Botrytis cinerea on musts and wines. The comparison of the immunoassay result with the quantitative analysis of usual markers (gluconic acid, sugars and polyols) showed the relevance of this innovative tool.

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products.

Effect of cytokinin and auxin application on double cropping performance in Vitis vinifera: preliminary findings

Double cropping is a novel technique, driven by the extension of the growing season caused by global warming.