terclim by ICS banner
IVES 9 IVES Conference Series 9 An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

Abstract

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87). The different scion:rootstock combinations were planted and maintained under well-watered conditions, a 50% reduction of irrigation, as well as no irrigation (dryland). Morphological, phenological, physiological and carpological measurements were gathered in addition to soil moisture measurements and environmental monitoring. Results indicated a strong negative vegetative response to the increased water constraint, especially in vines grafted on R110.  Moreover, all of the different scion:rootstock combinations reduced stomatal conductance to conserve water use under reduced irrigation conditions. Phenological progression and ripening monitoring indicated that vines advanced their phenology when they experience recurring water constraint. A lowering in total vine yield was observed in the dryland vines, though the difference was not as pronounced in the CAB combinations. A high degree of phenotypic plasticity was observed in most plant-level measurements. The data will be discussed from the perspective of evaluating adaptability to the stressors and to draw attention to the importance of experiments where the responses to water constraint are followed from planting onwards.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Reinhard Swart1*, Anke Berry1, Stenford Matsikidze1, Philip Young1, Anscha Zietsman,Talitha Venter, Carlos Poblete-Echeverria1­­, Melané A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

adaptation, viticulture, dryland, water stress, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

International Terroir Congress: 14 years of scientific proceedings!

We are a partner of the International Terroir Congress. For 4 months, our team has been putting the congress archives online. We are very proud to announce that the 14 years of archives are finally available. All archives of the International Terroir Congress are...

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

New markers for monitoring “fresh mushroom aroma” in wine: A dual approach using microbiological and chemical tools from the vineyard to winery–A synthesis of recent research advances

The ‘fresh mushroom off-flavour’ has been recognized by the wine industry as an emerging defect since the 2000s. For many years, this off-flavour was not specifically characterized and rather grouped under ‘earthy’ and ‘musty’ taints. However, it has become increasingly problematic due to its rising prevalence. In some vineyards, incidents of this off-flavour now occur as frequently as once every five years. This trend may be associated with climatic changes affecting regions that are more prone to warm and wet seasons.

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.