terclim by ICS banner
IVES 9 IVES Conference Series 9 An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

Abstract

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87). The different scion:rootstock combinations were planted and maintained under well-watered conditions, a 50% reduction of irrigation, as well as no irrigation (dryland). Morphological, phenological, physiological and carpological measurements were gathered in addition to soil moisture measurements and environmental monitoring. Results indicated a strong negative vegetative response to the increased water constraint, especially in vines grafted on R110.  Moreover, all of the different scion:rootstock combinations reduced stomatal conductance to conserve water use under reduced irrigation conditions. Phenological progression and ripening monitoring indicated that vines advanced their phenology when they experience recurring water constraint. A lowering in total vine yield was observed in the dryland vines, though the difference was not as pronounced in the CAB combinations. A high degree of phenotypic plasticity was observed in most plant-level measurements. The data will be discussed from the perspective of evaluating adaptability to the stressors and to draw attention to the importance of experiments where the responses to water constraint are followed from planting onwards.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Reinhard Swart1*, Anke Berry1, Stenford Matsikidze1, Philip Young1, Anscha Zietsman,Talitha Venter, Carlos Poblete-Echeverria1­­, Melané A. Vivier1

1 South African Grape and Wine Research Institute (SAGWRI), Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa

Contact the author*

Keywords

adaptation, viticulture, dryland, water stress, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Georgian vitis germplasm: conservation, research and usage

Grapevine Vitis vinifera L. is a leader perennial crops for the Republic of Georgia, the South Caucasus. This is a region where the first wine making practice was initiated 8.000 years ago (McGovern et al. 2017) and a spot of grape domestication. The country of Georgia holds 525 local and more than 60 breeding varieties – they are preserved in 9 field collections inside the country.The list of recommended wine cultivars contains 34 names, including 27 old autochthonous varieties and covering 94% of the country’s vineyards.

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

Chromatic characteristics of Nermantis and Termantis wines from traditional and withered grapes

The work aims to characterise the colour features of the wines of two new resistant varieties breeeded at the Edmund Mach Foundation (Italy) and recently inscribed in the Italian National Registriy of Vine Varieties.

Typicité et terroir : importance relative du type de sol et du niveau de maturité dans la typologie sensorielle du vin

Le lien fonctionnel entre typicité et terroir a été étudié en prenant en compte deux dimensions importantes : le type de sol et la date de vendanges. Ces deux facteurs sont, à des degrés divers

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.