terclim by ICS banner
IVES 9 IVES Conference Series 9 A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

Abstract

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Mutations in both DMR6-1 and DMR6-2 genes were introduced into two grapevine cultivars using CRISPR-Cas9 using two methods. In the first case, transgene delivery mediated by A. tumefaciens was employed, while in the second case, we developed a ‘single-cell technology’ for gene editing, creating non-transgenic grapevine mutants through the regeneration of protoplasts previously edited with the CRISPR/Cas9 ribonucleoprotein.

We tested the susceptibility of single and double mutants to DM through artificial inoculation assays on detached leaves and whole plants. Our findings indicate that a simultaneous mutation in both DMR6-1 and DMR6-2 is needed to significantly enhance resistance to DM, with the double mutant (dmr6-1-dmr6-2) outperforming either single mutant in both cultivars. Elevated levels of endogenous SA were only observed in the double mutant, while single mutation in DMR6-1 or DMR6-2 proved ineffective. Collectively, our data highlight the need for a double knockout to achieve appreciable results against DM-susceptibility.

Currenlty, we are adapting the ‘single-cell technology’ to generate edited vines from various agronomically relevant cultivars. In parallel, we are assessing the performance of plants edited in different susceptibility genes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Lisa Giacomelli1*, Tieme Zeilmaker2, Oscar Giovannini1, Umberto Salvagnin3, Domenico Masuero1, Pietro Franceschi1, Urska Vrohvsek1, Simone Scintilla4, Jeroen Rouppe van der Voort2, Claudio Moser1

1 Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
2 Enza ZadenEnza Zaden Research & Development B.V., Enkhuizen, The Netherlands  
3 C.I.VIT. Consorzio Innovazione Vite, Trento, Italy
4 Hudson River Biotechnology, Wageningen, The Netherlands

Contact the author*

Keywords

DMR6, grapevine, DNA-free, gene editing, downy mildew, susceptibility gene

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Terroir effects on the response of Tempranillo grapevines to irrigation in four locations of Spain: agronomic performance and water relations

We report the effects of different drip irrigation treatments on the agronomic performance and water relations of Tempranillo grapevines, pruned to a bilateral cordon

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.