terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Abstract

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm). Each combination had one row under irrigation and two rows under dryland conditions. Five panels were selected in each of the 12 rows for monitoring purposes with the center vine in each selected panel being the target vine.

Vegetative measurements (trunk circumference, lateral leaf area and pruning mass), physiological monitoring (stomatal conductance and midday stem water potential), phenological progression and reproductive measurements (average yield per vine, average bunches per vine and average bunch mass) were conducted for the 2022-23 and 2023-24 seasons. Root studies were also done in the 2023-24 season. Initial data analysis revealed performance differences among rootstocks within the same irrigation regime (rootstock response) and between dryland and irrigated conditions (rootstock-irrigation response). Dryland vines showed faster post-véraison phenological progression. In terms of stem water potential, vines grafted to R110 and R99 responded similarly under irrigated conditions whilst 1103Paulsen and US 8-7 displayed similar trends under dryland conditions. Results reveal that some combinations may be adapted better to conditions of water constraint. This information is useful for planning strategies to mitigate challenging conditions in terms of the availability of water resources.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Sihle Xogwa,1, Carlos Poblete-Echeverría1, Melané Vivier1

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602

Contact the author*

Keywords

grapevine, rootstock, water stress, vine performance, vine response

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effects of environmental factors and vineyard pratices on wine flora dynamics

he intensification of t vineyard practices led to an impoverishment of the biological diversity. In vineyard management, the reflection to reduce pesticides uses concerns mainly the soil management of the vineyard, and often focuses on flora management in the inter-row.

Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Water deficit profoundly impacts the quality of grapes and results in considerable reductions in crop yield. First symptoms manifest with reduced stomatal conductance and transpiration, accompanied by the wilting of apical leaves and tendrils. So far, there is no available data on the water stress response in Croatian grapevine germplasm. Therefore, objective of this study was to determine influence of genotype and treatment on stomatal conductance (gsw), transpiration (E), electron transport rate (ETR), and quantum efficiency in light (PhiPS2).

Lactic acid bacteria: A possible aid to the remediation of smoke taint?

With climate change, the occurrence of wildfires has increased in several viticultural regions of the world. Subsequently, smoke taint has become a major issue, threatening the sustainability of the wine industry.

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.