terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Abstract

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm). Each combination had one row under irrigation and two rows under dryland conditions. Five panels were selected in each of the 12 rows for monitoring purposes with the center vine in each selected panel being the target vine.

Vegetative measurements (trunk circumference, lateral leaf area and pruning mass), physiological monitoring (stomatal conductance and midday stem water potential), phenological progression and reproductive measurements (average yield per vine, average bunches per vine and average bunch mass) were conducted for the 2022-23 and 2023-24 seasons. Root studies were also done in the 2023-24 season. Initial data analysis revealed performance differences among rootstocks within the same irrigation regime (rootstock response) and between dryland and irrigated conditions (rootstock-irrigation response). Dryland vines showed faster post-véraison phenological progression. In terms of stem water potential, vines grafted to R110 and R99 responded similarly under irrigated conditions whilst 1103Paulsen and US 8-7 displayed similar trends under dryland conditions. Results reveal that some combinations may be adapted better to conditions of water constraint. This information is useful for planning strategies to mitigate challenging conditions in terms of the availability of water resources.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Sihle Xogwa,1, Carlos Poblete-Echeverría1, Melané Vivier1

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602

Contact the author*

Keywords

grapevine, rootstock, water stress, vine performance, vine response

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Spotted lanternfly, a new invasive insect in vineyards: is it a threat to grapevines?

The spotted lanternfly (SLF; Lycorma delicatula) is a phloem-feeding polyphagous insect invasive to the Eastern U.S.. Since its first detection in Pennsylvania (U.S.) in 2014, large infestations and economic damage (e.g., decreased yield, vine decline, greater pesticide use) have been reported in an increasing number of vineyards, threatening the sustainability and growth of the wine industry in infested regions. Our team has been investigating the impacts of SLF phloem-feeding on physiological processes, fruit production, juice, and wine composition of different grape cultivars, and also evaluated if the SLF can transmit important grapevine pathogens. In addition, we are working closely with stakeholders to better enumerate the economic damage caused by this pest. These findings will provide relevant information to grape and wine producers to help identify action thresholds and develop a more targeted integrated pest management program.

Chardonnay white wine bottled with different oenological tannins: effect on colour traits, volatile composition and sensory attributes during shelf-life

The use of oenological tannins during winemaking has been mostly studied for improving colour traits and stability on red wines. Their effectiveness mainly depends on the tannin composition, grape variety and winemaking approach [1].

Terroir zoning in appellation campo de borja (northeast Spain): Preliminary results

The components and methodology for characterization of the terroir have been described by Gómez-Miguel & Sotés (1993-2014, 2003) and Gómez-Miguel (2011) taking into account the full range of environmental factors (i.e: climate, lithology, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and specific variables to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.).

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.