terclim by ICS banner
IVES 9 IVES Conference Series 9 Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Abstract

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm). Each combination had one row under irrigation and two rows under dryland conditions. Five panels were selected in each of the 12 rows for monitoring purposes with the center vine in each selected panel being the target vine.

Vegetative measurements (trunk circumference, lateral leaf area and pruning mass), physiological monitoring (stomatal conductance and midday stem water potential), phenological progression and reproductive measurements (average yield per vine, average bunches per vine and average bunch mass) were conducted for the 2022-23 and 2023-24 seasons. Root studies were also done in the 2023-24 season. Initial data analysis revealed performance differences among rootstocks within the same irrigation regime (rootstock response) and between dryland and irrigated conditions (rootstock-irrigation response). Dryland vines showed faster post-véraison phenological progression. In terms of stem water potential, vines grafted to R110 and R99 responded similarly under irrigated conditions whilst 1103Paulsen and US 8-7 displayed similar trends under dryland conditions. Results reveal that some combinations may be adapted better to conditions of water constraint. This information is useful for planning strategies to mitigate challenging conditions in terms of the availability of water resources.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Talitha Venter1*, Sihle Xogwa,1, Carlos Poblete-Echeverría1, Melané Vivier1

1 South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa, 7602

Contact the author*

Keywords

grapevine, rootstock, water stress, vine performance, vine response

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.

Hplc-ms analysis of carotenoids as potential precursors for 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in riesling grapes

In recent years, an undesirable premature “aged” character has been noticed in a growing number of young Riesling wines, associated with extreme weather conditions leading to increased radiation intensity and/ or sun exposure of grapes.

Oligosaccharides in red wines: could their structure and composition be influenced by the grape-growing

Oligosaccharides have only recently been characterized in wine, and the information on composition and content is still limited. In wine, these molecules are mainly natural byproducts of the degradation of grape berry cell wall polysaccharides. Wine oligosaccharides present several physicochemical properties, being one relevant factor linked to the astringency perception of wines (1,2). A terroir can be defined as a grouping of homogeneous environmental units based on the typicality of the products obtained. This notion is particularly associated with wine, being the climate and the soil two of the major elements of terroir concept.

Contribution of seeds to red wine phenolic composition

Tannin composition is an important attribute in red wine quality, and it is therefore critical to understand the factors influencing tannin extraction during alcoholic fermentation. Tannins contribute to the mouthfeel of wines, but they also form pigmented polymers...