terclim by ICS banner
IVES 9 IVES Conference Series 9 Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Abstract

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.

Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate. This underscores the importance of providing guidance and recommendations to winegrowers, enabling them to make informed decisions about the selection of suitable planting materials. Despite its critical significance, there is very limited information available on the early rooting behavior of commercial rootstocks. Observing below-ground growth poses challenges, but the use of rhizoboxes has proven effective in investigating root-related issues across different species.

Therefore, we established a semi-automated platform using RGB imaging to monitor the root development of three commercial grapevine rootstocks and characterize root architecture parameters including maximal rooting depth and the area colonized by roots. The image processing method enables a rapid batch analysis, yielding reliable data that is highly comparable to the manually assessed reference dataset. This approach serves as a valuable framework for future evaluation of the assertiveness of commercial grapevine rootstocks under challenging planting conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Timo Strack1*, Kai Voss-Fels1

1 Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

rhizoboxes, root phenotyping, root system architecture, climate change, drought stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo.

Physiological responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

Challenging conditions created by limited water supply and changes in the climate require an understanding of the physiological status of table grapes along the whole value chain. This is critical to develop tools for regulatory management of growth balances and grape quality. This study aimed to determine the impact of different amounts of water and an altered micro-climate (complete covering of vineyards with plastic) on the physiological reaction of the grapevine during the growth season.

Launching the GiESCO guide

Considering that the transfer of research results to the professional level is one of the keys to progress, GiESCO proposes to publish a technical guide supported by scientific references and in the form of standard sheets.