terclim by ICS banner
IVES 9 IVES Conference Series 9 Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Abstract

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.

Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate. This underscores the importance of providing guidance and recommendations to winegrowers, enabling them to make informed decisions about the selection of suitable planting materials. Despite its critical significance, there is very limited information available on the early rooting behavior of commercial rootstocks. Observing below-ground growth poses challenges, but the use of rhizoboxes has proven effective in investigating root-related issues across different species.

Therefore, we established a semi-automated platform using RGB imaging to monitor the root development of three commercial grapevine rootstocks and characterize root architecture parameters including maximal rooting depth and the area colonized by roots. The image processing method enables a rapid batch analysis, yielding reliable data that is highly comparable to the manually assessed reference dataset. This approach serves as a valuable framework for future evaluation of the assertiveness of commercial grapevine rootstocks under challenging planting conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Timo Strack1*, Kai Voss-Fels1

1 Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

rhizoboxes, root phenotyping, root system architecture, climate change, drought stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

Effect of different canopy managements on microclimate and carbon allocation in Vitis vinifera cv Chardonnay

Climate change strongly affects the wine-growing sector which increasingly requires in situ adaptation strategies aimed at preserving the sustainability of production. Investigating microclimate becomes crucial in comprehending environmental pressures on plants. The microclimatic investigation conducted in the Orvieto PDO (central Italy) allowed us to highlight the climatic dynamics occurring in the last 25 years and the frequency and intensity of abiotic stresses. Two management strategies for the canopy were identified: early defoliation (ELR) and foliar application of Basalt Flour ® (FB) compared to the ordinary management (C) of the company (bud selection and topping). The effects on plant vigour indices (LAI), resource allocation in terms of carbon stored in the above-ground organs of the vine, and the microclimate of the canopy and the berry were evaluated. In particular, microclimate was evaluated through a network of sensors connected wirelessly (Wireless Sensor Network), dedicated to collecting information on temperature and humidity in the canopy and clusters.

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.