terclim by ICS banner
IVES 9 IVES Conference Series 9 Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Abstract

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.

Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate. This underscores the importance of providing guidance and recommendations to winegrowers, enabling them to make informed decisions about the selection of suitable planting materials. Despite its critical significance, there is very limited information available on the early rooting behavior of commercial rootstocks. Observing below-ground growth poses challenges, but the use of rhizoboxes has proven effective in investigating root-related issues across different species.

Therefore, we established a semi-automated platform using RGB imaging to monitor the root development of three commercial grapevine rootstocks and characterize root architecture parameters including maximal rooting depth and the area colonized by roots. The image processing method enables a rapid batch analysis, yielding reliable data that is highly comparable to the manually assessed reference dataset. This approach serves as a valuable framework for future evaluation of the assertiveness of commercial grapevine rootstocks under challenging planting conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Timo Strack1*, Kai Voss-Fels1

1 Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

rhizoboxes, root phenotyping, root system architecture, climate change, drought stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

Synergistic effect of fumaric acid and chitosan on the inhibition of malolactic fermentation

During wine storage and aging, microorganisms capable of degrading malic acid in an undesirable manner can proliferate.

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile.

The affinity of white wine proteins for bentonite is dependent on wine composition and is directly related to their thermal stability / sensitivity

Bentonite fining is commonly used in oenology to remove all or parts of white wine proteins, which are known to be involved in haze formation. This fining is effective, but has disadvantages: it is not selective, thus molecules responsible for aroma are also removed, it causes substantial volume losses, and finally it generates wastes. Over the last decades, the knowledge of wine proteins has increased: they have been identified, their structures are known, some of them have been crystallized.

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades.