terclim by ICS banner
IVES 9 IVES Conference Series 9 Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Abstract

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.

Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate. This underscores the importance of providing guidance and recommendations to winegrowers, enabling them to make informed decisions about the selection of suitable planting materials. Despite its critical significance, there is very limited information available on the early rooting behavior of commercial rootstocks. Observing below-ground growth poses challenges, but the use of rhizoboxes has proven effective in investigating root-related issues across different species.

Therefore, we established a semi-automated platform using RGB imaging to monitor the root development of three commercial grapevine rootstocks and characterize root architecture parameters including maximal rooting depth and the area colonized by roots. The image processing method enables a rapid batch analysis, yielding reliable data that is highly comparable to the manually assessed reference dataset. This approach serves as a valuable framework for future evaluation of the assertiveness of commercial grapevine rootstocks under challenging planting conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Timo Strack1*, Kai Voss-Fels1

1 Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

rhizoboxes, root phenotyping, root system architecture, climate change, drought stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Terroir, climat et sol

Le sol et le climat occupent une place prépondérante dans le concept de terroir, pour lequel l’OIV s’apprête à adopter une définition internationale. Les travaux de recherche qui ont été menés depuis une trentaine d’années sur ces thèmes et qui ont été, pour les plus importants, présentés dans les 7 premiers Congrès Internationaux des Terroirs Viticoles ont considérablement modifié les connaissances sur le fonctionnement des terroirs viticoles dans le monde et le comportement des consommateurs avertis par rapport aux vins de terroirs.

Cascading effects of spring weather conditions into grape berry ripening

The effects of climate change on viticulture are complex due to interactions among factors and cascading effects.

Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Aim: The main goal of this study was to find an efficient canopy management to limit the high temperature-related aroma losses of White Muscat grapes, and consequently to preserve the quality standards of Asti DOCG wines.

Exploring non-Saccharomyces wine yeasts native from Castilla-La Mancha (Spain) to enhance bioprotection and quality of wines

The current tendency to reduce SO2 in winemaking, due to its adverse effects in sensitive individuals [1], has led to the development of new techniques to mitigate SO2 absence and to exert the same antimicrobial and antioxidant effects.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.