terclim by ICS banner
IVES 9 IVES Conference Series 9 Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

Abstract

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.

Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate. This underscores the importance of providing guidance and recommendations to winegrowers, enabling them to make informed decisions about the selection of suitable planting materials. Despite its critical significance, there is very limited information available on the early rooting behavior of commercial rootstocks. Observing below-ground growth poses challenges, but the use of rhizoboxes has proven effective in investigating root-related issues across different species.

Therefore, we established a semi-automated platform using RGB imaging to monitor the root development of three commercial grapevine rootstocks and characterize root architecture parameters including maximal rooting depth and the area colonized by roots. The image processing method enables a rapid batch analysis, yielding reliable data that is highly comparable to the manually assessed reference dataset. This approach serves as a valuable framework for future evaluation of the assertiveness of commercial grapevine rootstocks under challenging planting conditions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Timo Strack1*, Kai Voss-Fels1

1 Department of Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany

Contact the author*

Keywords

rhizoboxes, root phenotyping, root system architecture, climate change, drought stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Which heat test really represents the haze risk of a white Sauvignon wine ?

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days)

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Climate change is modifying environmental conditions in all wine-growing areas of the
world.

Effect Of Grape Polysaccharides On The Volatile Composition Of Red Wines

Yeast mannoproteins and derivates are polysaccharides produced from the cell walls of different yeast strains widely used in the winemaking and finning of wines to improve their overall stability and sensory properties.

Grape and wine quality of terraced local variety Pinela (Vitis vinifera L.) under different water management

Climate change is driving global temperatures up together with a reduction of rainfall, posing a risk to grape yields, wine quality, and threatening the historical viticulture areas of Europe.