terclim by ICS banner
IVES 9 IVES Conference Series 9 Grape development revisited through the single-berry metabolomic clock paradigm

Grape development revisited through the single-berry metabolomic clock paradigm

Abstract

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived. Non-targeted UHPLC-HRMS analyses of single berries yielded 9,335 compounds with specific mass and retention time. This dataset was submitted to an analysis workflow, combining classification and dimension reduction tools, to reveal the dynamics of metabolite composition. The outcomes of this workflow highlight an innovative redefinition of developmental stages, through the clustering of metabolites into 11 specific kinetic patterns. More precisely, the usual double sigmoidal growth pattern could be split into more transient stages characterized by the accumulation of specific metabolites. For instance, we identified a cluster of metabolites annunciative of the onset of ripening at the end of the herbaceous plateau which witnesses transient lipidic changes. We also found a cluster composed of stilbenes that accumulate during berry shriveling, following sugar loading. This non-targeted approach enables a more precise and unbiased characterization of grapevine berry development through the metabolomic clock paradigm, paving the way for a better assessment of berry physiological stage in genetic studies and ultimately for varietal selection and adaptation to climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Flora Tavernier1*, Stefania Savoi2, Laurent Torregrosa3, Philippe Hugueney4, Raymonde Baltenweck4, Vincent Segura1* 5and Charles Romieu1 5

1 UMR AGAP Institute, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34398 Montpellier, France
2 Department of Agricultural, Forest and Food Sciences, Università di Torino (UniTO), 10095 Grugliasco, Italy
3 UMR LEPSE, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34060 Montpellier, France
4 UMR SVQV, INRAe-Colmar, 68000 Colmar, France
5 UMT Geno-Vigne, IFV-INRAe-Institut Agro Montpellier, 34398 Montpellier, France

Contact the author*

Keywords

Vitis vinifera L., untargeted metabolites, single berry, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effects of severe shoot trimming at different phenological stages on the composition of Merlot grapes

High concentration of sugars in grapes and alcohols in wines is one of the consequences of climate change on viticulture production in several wine regions. One of the options to alleviate this potential problem is to perform severe shoot trimming of the vines to limit the production of carbohydrates. Two different studies were performed in order to investigate the effects of severe shoot trimming on the composition of Merlot grapes; in a first study severe shoot trimming was performed at three different phenological stages (at berry set, at the beginning of veraison and at the end of veraison), while in a second study two trimming treatments (standard shoot trimming and severe shoot trimming performed at the end of veraison) were combined with two shoot densities in order to evaluate the relative impact of these treatments on Merlot grape composition.

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin.

Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Wine quality is influenced by grape maturity, typically monitored by measuring sugar content and acidity.

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

The role of climate/soil of different zones/terroirs on grape characteristics

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.