terclim by ICS banner
IVES 9 IVES Conference Series 9 Grape development revisited through the single-berry metabolomic clock paradigm

Grape development revisited through the single-berry metabolomic clock paradigm

Abstract

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived. Non-targeted UHPLC-HRMS analyses of single berries yielded 9,335 compounds with specific mass and retention time. This dataset was submitted to an analysis workflow, combining classification and dimension reduction tools, to reveal the dynamics of metabolite composition. The outcomes of this workflow highlight an innovative redefinition of developmental stages, through the clustering of metabolites into 11 specific kinetic patterns. More precisely, the usual double sigmoidal growth pattern could be split into more transient stages characterized by the accumulation of specific metabolites. For instance, we identified a cluster of metabolites annunciative of the onset of ripening at the end of the herbaceous plateau which witnesses transient lipidic changes. We also found a cluster composed of stilbenes that accumulate during berry shriveling, following sugar loading. This non-targeted approach enables a more precise and unbiased characterization of grapevine berry development through the metabolomic clock paradigm, paving the way for a better assessment of berry physiological stage in genetic studies and ultimately for varietal selection and adaptation to climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Flora Tavernier1*, Stefania Savoi2, Laurent Torregrosa3, Philippe Hugueney4, Raymonde Baltenweck4, Vincent Segura1* 5and Charles Romieu1 5

1 UMR AGAP Institute, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34398 Montpellier, France
2 Department of Agricultural, Forest and Food Sciences, Università di Torino (UniTO), 10095 Grugliasco, Italy
3 UMR LEPSE, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34060 Montpellier, France
4 UMR SVQV, INRAe-Colmar, 68000 Colmar, France
5 UMT Geno-Vigne, IFV-INRAe-Institut Agro Montpellier, 34398 Montpellier, France

Contact the author*

Keywords

Vitis vinifera L., untargeted metabolites, single berry, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Plastic cover film on table grapes from field to cold storage

Plastic film covering is a technique largely used in viticulture to protect table grapes vines from adverse weather conditions and to reduce the negative effects of grapevine fungi disease. Plastic film composition affects solar radiation income inside the covering with effects on sunlight wavelengths in relation to different absorbance and reflectance. The interaction of selected light ranges with vines could influence grape ripening and yield and consequently influence shelf life.

WHICH TERROIR-RELATED FACTORS INFLUENCE THE MOST VOLATILE COMPOUND PRODUCTION IN COGNAC BASE WINE?

Cognac is a famous spirit produced in southwest France in the region of the eponymous town from wines mainly from Vitis vinifera cv. Ugni blanc. This variety gives very acidic and poorly aromatic base wines for distillation which are produced according to a very specific procedure. Grapes are picked at low sugar concentrations ranging 13-21 °Brix and musts with high turbidity (>500 NTU) are fermented without sulphite addition [1]. Fermentative aromas, as esters and higher alcohols, are currently the main quality markers considered in Cognac spirits.

Mineral-wine profile and AI: wine authentication and identification

Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms).

Grapegrowing soils

The soil plays a key role in viticulture since it defines the planting depth, development and aeration of the root system and also controls the absorption of mineral elements and water conditions of the plant

Ripening potential of Touriga Nacional variety with different canopy management techniques and in different regions (Dão, Bairrada and Vinhos Verdes)

Foreseeing climatic changes, the abnormally hot and dry year of 2005 can be revealer of some varieties behavior in different climatic conditions.