terclim by ICS banner
IVES 9 IVES Conference Series 9 Grape development revisited through the single-berry metabolomic clock paradigm

Grape development revisited through the single-berry metabolomic clock paradigm

Abstract

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived. Non-targeted UHPLC-HRMS analyses of single berries yielded 9,335 compounds with specific mass and retention time. This dataset was submitted to an analysis workflow, combining classification and dimension reduction tools, to reveal the dynamics of metabolite composition. The outcomes of this workflow highlight an innovative redefinition of developmental stages, through the clustering of metabolites into 11 specific kinetic patterns. More precisely, the usual double sigmoidal growth pattern could be split into more transient stages characterized by the accumulation of specific metabolites. For instance, we identified a cluster of metabolites annunciative of the onset of ripening at the end of the herbaceous plateau which witnesses transient lipidic changes. We also found a cluster composed of stilbenes that accumulate during berry shriveling, following sugar loading. This non-targeted approach enables a more precise and unbiased characterization of grapevine berry development through the metabolomic clock paradigm, paving the way for a better assessment of berry physiological stage in genetic studies and ultimately for varietal selection and adaptation to climate change.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Flora Tavernier1*, Stefania Savoi2, Laurent Torregrosa3, Philippe Hugueney4, Raymonde Baltenweck4, Vincent Segura1* 5and Charles Romieu1 5

1 UMR AGAP Institute, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34398 Montpellier, France
2 Department of Agricultural, Forest and Food Sciences, Università di Torino (UniTO), 10095 Grugliasco, Italy
3 UMR LEPSE, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, 34060 Montpellier, France
4 UMR SVQV, INRAe-Colmar, 68000 Colmar, France
5 UMT Geno-Vigne, IFV-INRAe-Institut Agro Montpellier, 34398 Montpellier, France

Contact the author*

Keywords

Vitis vinifera L., untargeted metabolites, single berry, phenology

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Uncovering the effectiveness of vineyard techniques used to delay ripening through meta-analysis

One of the most concerning trends associated with increasing heat and water stress is advanced ripening of grapes, which leads to harvesting fruit at higher sugar concentrations but lacking optimal phenolic (i.e. color and mouthfeel) and aromatic maturity. Mitigation techniques for this phenomenon have been studied for many years and practices to delay sugar accumulation have been identified, including antitranspirants, delayed pruning and late-source-limitation techniques. Evaluation of the efficacy of these vineyard practices has occurred across a wide range of environments, vintages, varieties and growing conditions. To assess the broader efficacy of these three vineyard practices, which are easy-to-implement and cost-effective, a meta-analytic approach was adopted using data retrieved from 43 original studies.

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Enological, economical, social and viticulture ”terroir” units as fundamental elements of mosaic of “big” zoning

Nous savons tous très bien qu’on a assisté au cours de ces dix dernières années à une éclosion soudaine de recherches sur le zonage viti-vinicole qui, à partir par exemple du modèle du concept de “terroir”, se sont de plus en plus enrichies en passant aux “Unités ou Systèmes de Transformation” (UTTE) et “Valorisation” (UTCE) pour terminer avec les “Systèmes productifs globaux du Territoire” (UTB) comprenant en filière les aspects existentiels (UTBES), sociaux (UTBSO) et économiques (UTBEC) hypothisés dans le “GRANDE ZONAZIONE: Grand zonage” (MORLAT R., 1996, CARBONNEAU A., 1996, TOUZARD J.M. 1998, CARBONNEAU A., CARGNELLO G., 1996, 1998, CARGNELLO G., 1994, 1995, 1996, 1998, 1999, 2001, -MILOTIC A., CARGNELLO G., PERSURIC G., 1999, PERSURIC G., STAYER M., CARGNELLO G., 2000, MILOTIC A., OPLANIC M., CARGNELLO G., PERSURIC G., 2000).