terclim by ICS banner
IVES 9 IVES Conference Series 9 Ugni blanc berry and wine composition impacted by thirteen rootstocks

Ugni blanc berry and wine composition impacted by thirteen rootstocks

Abstract

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

This study was conducted in 2021 in the GreffAdapt plot (55 rootstocks x 5 scions x 3 blocks) on cv. Ugni blanc (Marguerit et al. 2019). The effects of thirteen selected rootstocks were evaluated on various viticultural parameters as well as berry composition including detailed amino acid profiles at harvest and fermentative volatile contents of the corresponding wines, fermented under standardized conditions similar to Cognac base wine elaboration.

Among all the parameters measured, rootstock effects outweighed block effects, with significant variations in vigor observed. In 2021, low to no water deficit conditions were found. Significant differences between sugar and nitrogen compound levels in the must were observed between rootstocks with low sugar levels, typical for Cognac base wine production. Differences in amino acid concentrations and proportions were substantial leading to wine with distinct aroma profiles with 333EM and Evex13-5 having the highest concentration of higher alcohol acetate (> 3 mg/L) while RSB and Gravesac had the lowest (~ 2.8 mg/L). Although the connection between vine characteristics and wine volatiles was not apparent, aroma composition appeared linked to must composition, necessitating further investigation.

Acknowledgements: The authors would like to thank the Experimental Viticultural Unit of Bordeaux 1442, INRAE, F- 33883 Villenave d’Ornon, for its contribution with the setting up of the GreffAdapt experimental vineyard.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Julia Gouot1,2,3*, Laura Farris1,2, Marine Morel4, Nicolas Le Menn1,2, Xavier Poitou3, Mathilde Boisseau3, Elisa Marguerit4, Jean-Christophe Barbe1,2

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3R&D Department, JAS Hennessy & Co, Cognac, France
4EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

Amino acids, Aroma compounds, Ugni blanc, Rootstock, Yield

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.

The evolution of wine appellations in the United States

Le système des appellations d’origine aux Etats-Unis était adopté en 1978 et est entré en vigueur en 1983. Jusqu’à présent, 146 aires viticoles avaient été établies dans 26 états.

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Within vineyard temperature structure and variability in the umpqua valley of Oregon

Climate influences viticulture and wine production at various scales with the majority of attention given to regional characteristics that define the general varieties that can be grown and the wine styles that can be produced.

Ripening behaviour and grape must quality of eleven white resistant varieties in Trentino

In a situation of uncertainty towards the overall effect of climate change and the reduction of pestice utilization on quality, the wine sector needs to maintain the profitability of producers, which inexorably depends on ensuring the quality of grapes and wines. Among the various alternatives that can be adopted, hybrid varieties carrying resistance genes are currently gaining the attention of researchers and producers. Some of them are already a reality and are included in the national catalogue of some countries, selected by research institutes all over Europe.