terclim by ICS banner
IVES 9 IVES Conference Series 9 Ugni blanc berry and wine composition impacted by thirteen rootstocks

Ugni blanc berry and wine composition impacted by thirteen rootstocks

Abstract

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

This study was conducted in 2021 in the GreffAdapt plot (55 rootstocks x 5 scions x 3 blocks) on cv. Ugni blanc (Marguerit et al. 2019). The effects of thirteen selected rootstocks were evaluated on various viticultural parameters as well as berry composition including detailed amino acid profiles at harvest and fermentative volatile contents of the corresponding wines, fermented under standardized conditions similar to Cognac base wine elaboration.

Among all the parameters measured, rootstock effects outweighed block effects, with significant variations in vigor observed. In 2021, low to no water deficit conditions were found. Significant differences between sugar and nitrogen compound levels in the must were observed between rootstocks with low sugar levels, typical for Cognac base wine production. Differences in amino acid concentrations and proportions were substantial leading to wine with distinct aroma profiles with 333EM and Evex13-5 having the highest concentration of higher alcohol acetate (> 3 mg/L) while RSB and Gravesac had the lowest (~ 2.8 mg/L). Although the connection between vine characteristics and wine volatiles was not apparent, aroma composition appeared linked to must composition, necessitating further investigation.

Acknowledgements: The authors would like to thank the Experimental Viticultural Unit of Bordeaux 1442, INRAE, F- 33883 Villenave d’Ornon, for its contribution with the setting up of the GreffAdapt experimental vineyard.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Julia Gouot1,2,3*, Laura Farris1,2, Marine Morel4, Nicolas Le Menn1,2, Xavier Poitou3, Mathilde Boisseau3, Elisa Marguerit4, Jean-Christophe Barbe1,2

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3R&D Department, JAS Hennessy & Co, Cognac, France
4EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

Amino acids, Aroma compounds, Ugni blanc, Rootstock, Yield

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vers la maîtrise de l’effeuillage pré-floral de la vigne

Dans le cadre de TerclimPro 2025, Thibaut Verdenal a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8405

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).