terclim by ICS banner
IVES 9 IVES Conference Series 9 Ugni blanc berry and wine composition impacted by thirteen rootstocks

Ugni blanc berry and wine composition impacted by thirteen rootstocks

Abstract

The Cognac region is expanding, driven by the success of its renowned brandy and the demand for high grape yields to ensure a steady supply of base wine for distillation. Ugni blanc, the most widely planted grape variety, relies on rootstocks for soil and climate adaptation, providing essential nutrient supplies to the scion. Understanding the impact of rootstocks on key berry components, such as sugars and nitrogen compounds, is crucial. These compounds serve as primary precursors for the production of fermentative aroma metabolites, which, in turn, act as quality indicators for eau-de-vie.

This study was conducted in 2021 in the GreffAdapt plot (55 rootstocks x 5 scions x 3 blocks) on cv. Ugni blanc (Marguerit et al. 2019). The effects of thirteen selected rootstocks were evaluated on various viticultural parameters as well as berry composition including detailed amino acid profiles at harvest and fermentative volatile contents of the corresponding wines, fermented under standardized conditions similar to Cognac base wine elaboration.

Among all the parameters measured, rootstock effects outweighed block effects, with significant variations in vigor observed. In 2021, low to no water deficit conditions were found. Significant differences between sugar and nitrogen compound levels in the must were observed between rootstocks with low sugar levels, typical for Cognac base wine production. Differences in amino acid concentrations and proportions were substantial leading to wine with distinct aroma profiles with 333EM and Evex13-5 having the highest concentration of higher alcohol acetate (> 3 mg/L) while RSB and Gravesac had the lowest (~ 2.8 mg/L). Although the connection between vine characteristics and wine volatiles was not apparent, aroma composition appeared linked to must composition, necessitating further investigation.

Acknowledgements: The authors would like to thank the Experimental Viticultural Unit of Bordeaux 1442, INRAE, F- 33883 Villenave d’Ornon, for its contribution with the setting up of the GreffAdapt experimental vineyard.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Julia Gouot1,2,3*, Laura Farris1,2, Marine Morel4, Nicolas Le Menn1,2, Xavier Poitou3, Mathilde Boisseau3, Elisa Marguerit4, Jean-Christophe Barbe1,2

1Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3R&D Department, JAS Hennessy & Co, Cognac, France
4EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d’Ornon, France

Contact the author*

Keywords

Amino acids, Aroma compounds, Ugni blanc, Rootstock, Yield

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Vine response to compost addition on a sandy-loam soil in the north-east of italy. Effects on root system, vegetative growth, yield and grape quality of Cabernet-Sauvignon cv

In this study two different compost types and two application methods were studied over 5 years (2009-2013) on mature Cabernet Sauvignon vines grown in a commercial vineyard in the AOC Piave area, northeastern Italy.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

La vinificación de las uvas aromáticas: Moscateles y Malvasías

Las uvas aromáticas se pueden dividir en dos clases, Moscateles y Malvasías, dependiendo del hecho de que el linalol o el geraniol, respectivamente, sean los alcoholes terpénicos monohidroxilados que

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Study of the volatil profile of minority white varieties

The genetic material preservation is a priority issue in winemaking research. The recovery of minority grape varieties can control the genetic erosion, contributing also to preserve wine typical characteristics. In D.O.Ca. Rioja (Spain) the number of grown white varieties has been very limited, representing Viura the 91% of the cultivated white grape area in 2005, while the others, Garnacha Blanca and Malvasía riojana, hardly were grown. For this reason, a recovery and characterization study of plant material was carried out in this region. In 2008, the results obtained allowed the authorization of three minority white varieties: Tempranillo Blanco, Maturana Blanca and Turruntés.