terclim by ICS banner
IVES 9 IVES Conference Series 9 Exploring the influence of grapevine rootstock on yield components 

Exploring the influence of grapevine rootstock on yield components 

Abstract

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry.  In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield. This study was conducted in 2022 and 2023 in the GreffAdapt experimental vineyard on 2 scions grafted onto 6 rootstock genotypes.
Yield was divided into several components: bud fertility, number of flower caps, bunches and seeds, bunch and 100-berry weight, and rachis architecture. We aim to determine which mechanisms such as variation of wood to bud connectivity at budburst and canopy porosity underlie rootstock effects on yield.
Rootstock had a significant effect on all yield components except fruit set in 2023. Rootstock explained between 7 and 23% of the variance of the traits measured. The 100-berry weight was the parameter most influenced by rootstock. Furthermore, in this study we were able to show a strong rootstock × scion interaction. The dominant factor for yield appears to be the number of berries per bunch, followed by the number of bunches.
The outcomes of this work are improved understanding of the influence of the rootstock on yield components and a classification of rootstocks based on conferred fertility.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marine Morel1*, Gaelle Vidal1, Anne-Marie Labandera1, Sarah Jane Cookson1, Martine Donnart1, Laurence Geny2, Elisa Marguerit1

1 EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2 UR Œnologie, Université de Bordeaux, 33140 Villenave d’Ornon, France

Contact the author*

Keywords

Rootstock × scion interaction, Vitis, trade-off, bunch characteristics, inflorescence primordia

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.

Organic mulches improve vine vigour, yield and physiological response in a semi-arid region

Recycled organic mulch within the row in vineyard floor management has become an interesting ecological strategy to adapt the crop to climate change consequences in semi-arid regions.
This study aimed to assess the impact of three recycled organic mulches [straw (STR), grape pruning debris (GPD), and spent mushroom compost (SMC)] and two conventional soil management practices [herbicide (HERB) and under-row tillage (TILL)] on vegetative vigour (NDVI), production (kg/plant), and physiological parameters (δ13C in grapes and leaf gas exchange during four grapevine phenology stages). Additionally, temperature and water soil parameters were collected at three soil depths. Data was collected during the 2021 and 2022 grapevine growing seasons in La Rioja, Spain.

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.