terclim by ICS banner
IVES 9 IVES Conference Series 9 Berry shrivel causes – summarizing current hypotheses

Berry shrivel causes – summarizing current hypotheses

Abstract

Diverse ripening disorders affect grapevine resulting in high economic losses worldwide. The common obvious symptom is shriveling berries, however the shriveling pattern and the consequences for berry quality traits are distinct in each disorder. Among them, the disorder berry shrivel is characterized by a reduced sugar accumulation short after the onset of berry ripening leaving the clusters unsuitable for wine processing. Although our knowledge on BS increased recently, potential internal or external triggers contributing to the induction of BS are yet to be explored. Based on previously obtained results, we speculate on three main hypotheses for future research: i) BS starts with a failure in phloem unloading of sugar and its metabolism in berry cytosol, ii) the brush area of berries is subjected to a premature cell death starting BS and further promotes programmed cell death in other berry areas and pedicels, and iii) the onset of berry ripening is disturbed either by phytohormone or other signals with consequences on sink strength. Sampling strategies need to be adapted to account for ripening asynchrony and include pre-symptomatic clusters. Additionally, innovative ideas and new methodological approaches are necessary to decipher the spatial and temporal factors in BS induction on the biochemical, transcriptional and morphological level. BS is a challenge for viticulture, as prevention strategies are currently not reliable. Identifying the causal events could facilitate to adapt vineyard management to reduce BS risks.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Michaela Griesser*1, Stefania Savoi2, Bhaskar Bondada3, Astrid Forneck1, Markus Keller4

1 University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Viticulture and Pomology, Austria
2 University of Turin, Department of Agricultural, Forest and Food Sciences, Italy
3 Washington State University Tri-Cities, Department of Viticulture and Enology, USA
4 Washington State University, Irrigated Agriculture Research and Extension Center, Department of Viticulture and Enology, USA

Contact the author*

Keywords

sugar metabolism, mesocarp cell death, ripening onset regulation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Exogeneous C-S lyase enzyme, a potential tool for thiol enhancement in wine or beer?

Varietal thiols are considered for years as key aroma compounds in many wines. Their main origin is the cleavage during alcoholic fermentation of S-conjugate precursors present in grapes and musts, even if the levels of precursors already identified struggle to completely explain the levels of thiols found in wine.

Impact of technical itineraries on the diversity and the functioning of arbuscular mycorrhizal fungi and associated microorganisms in vineyards soils and grapevine roots

Context and purpose. The vine is a holobiont, where the plant interacts positively, negatively, and neutrally with microbes that together form the vine’s microbiome.

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

High pressure homogenization of wine lees. A tool to streamline the management of wine ageing

Aging on lees (AOL) has been used for wine aging for a long time, thanks to its ability to modify wine composition, improving sensory characteristics and stability. However, the prolonged contact with fermentation lees may increase the risk of developing sensory defects, due to the growth of unwanted microorganisms. Furthermore, AOL requires a large amount of work to manage bâtonnage and for topping up the barrels, significantly increasing production costs.

Tropical fruit aroma in white wines: the role of fermentation esters and volatile thiols

Volatile thiols are impact aroma compounds, well-known in the literature for imparting tropical fruit aromas such as passion fruit, guava, grapefruit, and citrus in white wines [1]. More recent evidence suggests that tropical fruit aromas are also caused by other aroma compounds besides thiols, such as fermentation esters, or the interaction between these volatile families. Therefore, the objective of this study was to investigate the effects of combining esters and/or thiols to determine their impact on the fruitiness aroma perception of white wines. Pinot gris wine was produced at the OSU research winery and was dearomatized using Lichrolut® EN. Combinations of fermentation volatile compounds were added to the wine, forming the aroma base. Treatment wines were composed of additions of different concentrations and combinations of thiols and/or esters. Samples were subjected to sensory analysis where forty-six white wine consumers evaluated the orthonasal aroma of the wines and participated in Check-All-That-Apply (CATA).