Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Within vineyard temperature structure and variability in the umpqua valley of Oregon

Within vineyard temperature structure and variability in the umpqua valley of Oregon

Abstract

Climate influences viticulture and wine production at various scales with the majority of attention given to regional characteristics that define the general varieties that can be grown and the wine styles that can be produced. However, within vineyard scale effects of climate can be substantial due to landscape variations. To better understand the effect of local weather and climate on terroir, the goal of this research was to examine within vineyard temperature variations. Temperature data was collected from 23 sites in a commercial 33 ha vineyard in the Umpqua Valley of Oregon over a five-year period during 2011-2015. Dormant period temperatures (Nov-Mar) varied by roughly 1°C across the 23 sites with the extreme minimum temperatures varying by just over 3°C. Spring temperatures (Apr-May) varied by roughly 2°C for the vineyard locations with frost occurrence varying as much as nine days in most years. During the summer (Jun-Aug) maximum temperatures varied more than minimum temperatures across the sites, while extreme maximums ranged nearly 5°C.

During the ripening period (Sept-Oct) diurnal temperatures ranges at the 23 sites averaged 20°C. Over all years and sites the growing season heat accumulation averaged 1467 GDD but ranged from 1181 in the coolest year (2011) to 1705 in the warmest year (2015). The average range of GDD during these vintages shows that within vineyard variability in heat accumulation is 375 GDD. These variations in temperatures and heat accumulation are weakly correlated with elevation differences between the sites, however the combined effects of slope/aspect have more significant correlations with temperatures at these sites, especially minimum temperatures. As a result of the within vineyard differences in temperatures and heat accumulation, this commercial vineyard adequately ripens a range of varieties from Albariño, , Viognier, Syrah, Tempranillo, Grenache, , Touriga Nacional, Tannat and others.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Henry E. Jones1, Gregory V. Jones1,2

(1) Fault Line Vineyards and Abacela Winery, 12500 Lookingglass Road, Roseburg, Oregon, USA
(2) Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, USA

Contact the author

Keywords

terroir, temperature, mesoscale, viticulture, spatial variation

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates.

Valutazione comparativa di cloni di Pinot nero per la produzione di vini base spumante in alcuni ambienti del Piemonte

Un vasto programma si riferisce alla verifica di 28 selezioni clonali di Pinot nero atte a vini base spumante. Gli impianti sono stati realizzati in diversi ambienti delle Langhe e del Monferrato nel periodo 1992-1996, in 57 vigneti diversi e su una superficie complessiva di circa 50 Ha.

Three new Apulian seedless varieties available for the table grape supply chain

The table grape industry in Europe is undergoing significant changes. For instance, in Italy, the national register of vine varieties was established in 1969, and since then, many varieties of table grapes have been registered. In the first thirty years, from 1969 to 1999, 62 seeded and 24 seedless varieties were registered. In the subsequent period, from 2000 to the present day, 23 seeded varieties and 99 seedless varieties were registered.

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).

Study of fungal and bacterial laccases for the reduction of ochratoxin A content in model wine

Ochratoxin A (OTA) is a mycotoxin produced by several filamentous fungi infecting grape bunches (Penicillium and Aspergillus spp.), this toxin pass to must when grapes are crushed and later it is found in wine. Following the evaluations of the toxicity of OTA, European Commission Regulations have been promulgated introducing upper limits for OTA concentrations in various commodities (cereals, cereal products, dried vine fruit, coffee, wine, grape juice, baby foods and dietary foods for special medical purposes).