Terroir 2016 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2016 9 Climates of Wine Regions Worldwide 9 Within vineyard temperature structure and variability in the umpqua valley of Oregon

Within vineyard temperature structure and variability in the umpqua valley of Oregon

Abstract

Climate influences viticulture and wine production at various scales with the majority of attention given to regional characteristics that define the general varieties that can be grown and the wine styles that can be produced. However, within vineyard scale effects of climate can be substantial due to landscape variations. To better understand the effect of local weather and climate on terroir, the goal of this research was to examine within vineyard temperature variations. Temperature data was collected from 23 sites in a commercial 33 ha vineyard in the Umpqua Valley of Oregon over a five-year period during 2011-2015. Dormant period temperatures (Nov-Mar) varied by roughly 1°C across the 23 sites with the extreme minimum temperatures varying by just over 3°C. Spring temperatures (Apr-May) varied by roughly 2°C for the vineyard locations with frost occurrence varying as much as nine days in most years. During the summer (Jun-Aug) maximum temperatures varied more than minimum temperatures across the sites, while extreme maximums ranged nearly 5°C.

During the ripening period (Sept-Oct) diurnal temperatures ranges at the 23 sites averaged 20°C. Over all years and sites the growing season heat accumulation averaged 1467 GDD but ranged from 1181 in the coolest year (2011) to 1705 in the warmest year (2015). The average range of GDD during these vintages shows that within vineyard variability in heat accumulation is 375 GDD. These variations in temperatures and heat accumulation are weakly correlated with elevation differences between the sites, however the combined effects of slope/aspect have more significant correlations with temperatures at these sites, especially minimum temperatures. As a result of the within vineyard differences in temperatures and heat accumulation, this commercial vineyard adequately ripens a range of varieties from Albariño, , Viognier, Syrah, Tempranillo, Grenache, , Touriga Nacional, Tannat and others.

DOI:

Publication date: June 22, 2020

Issue: Terroir 2016

Type: Article

Authors

Henry E. Jones1, Gregory V. Jones1,2

(1) Fault Line Vineyards and Abacela Winery, 12500 Lookingglass Road, Roseburg, Oregon, USA
(2) Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, USA

Contact the author

Keywords

terroir, temperature, mesoscale, viticulture, spatial variation

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Is the consumer ready for innovative fruit wines?

AIM: Wine consumption in the last fifteen years showed a decrease in Europe [1]. New alternatives of wines appeared on the market. Those beverages are obtained by blending wines and fruit juices or flavoring wines with artificial or natural aromas and have medium alcohol content (from 8 to 10.5%) [2]. Recently, an innovative fruit wine has been proposed obtained by co-fermenting grape must and kiwi juice [3] whose potential attractiveness to consumers should be exploited. However, differences in product acceptability and perception, as well as the individuals’ willingness to consume and pay could change in function of subjects socio-demographic characteristics. The target group selected is represented by young adults (18-35 years old) consumption groups.

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.

Moderate wine consumption as part of a Mediterranean diet and lifestyle under debate

Moderate wine consumption – with the meals – represents one of the beneficial components of the traditional mediterranean diet (med diet) and a positive item in the med diet score [1,2, 3]. The med diet is considered one of the best diets in the world and the world health organisation (who) identified this eating pattern as an effective strategy to prevent non-communicable diseases (ncd), since it is associated with lower disease occurrence and all-cause mortality [4] . Numerous well-conducted epidemiological studies have also reported that light-to-moderate intake of wine/alcoholic beverages is not only related to a reduced risk of cardiovascular disease, but also to all-cause mortality.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.