terclim by ICS banner
IVES 9 IVES Conference Series 9 Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Abstract

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomycesyeasts in sequential fermentation with commercial Saccharomyces cerevisiae. Trials were performed with isolates Metschnikowia pulcherrima K-6, Metschnikowia chyrsoperlae K-11, Metschnikowia sinensis/shanxiensis P-7, Lachancea thermotolerans P-25, Pichia kluyveri Z-3, Hanseniaspora uvarum Z-7, and Hanseniaspora guillermondii N-29, each in triplicate. The control treatment involved commercial strains L. thermotolerans, M. pulcherrima, and S. cerevisiae. A UHPLC-QqQ-MS/MS method was employed to monitor 37 metabolites, with 26 detected in the extracellular extracts produced by yeasts. The most significant changes in the concentration of identified compounds occurred in M. sinensis/shanxiensis/S. cerevisiae and H. guillermondii/S. cerevisiae ferments. M. sinensis/shanxiensiswith S. cerevisiae produced higher amounts of N-acetyl derivatives of tryptophan and phenylalanine, as well as xanthurenic acid and tyramine. Wines produced by H. guillermondii in sequential fermentation with S. cerevisiae had the highest concentration of L-kynurenine and 3-hydroxy anthranilic acid. These findings contribute to our understanding of how autochthonous non-Saccharomyces yeasts contribute to the aroma profile of wines, providing new insights into biotechnological tools for the production of wine starter cultures.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ana Boban1*, Urska Vrhovsek2, Andrea Anesi2, Vesna Milanović3, Irena Budić-Leto1

1 Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
2 Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
3 Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy

Contact the author*

Keywords

autochthonous yeast, wine, metabolism, non-Saccharomyces, starter culture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998).