Macrowine 2021
IVES 9 IVES Conference Series 9 Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Phytosterols and ergosterol role during wine alcoholic fermentation for 27 Saccharomyces cerevisiae strains

Abstract

Sterols are a class of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality (Daum et al., 1998). During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition (Mannazzu et al., 2008). Musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations (Casalta et al., 2013). Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in the absence of oxygen (Nes, 1987). Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol nature on fermentation kinetics parameters. Moreover, studies done until today analyzed a limited number of yeasts strains. For this reason, the aim of this work is to compare the fermentation performances of 27 Saccharomyces cerevisiae strains with phytosterols and ergosterol on two conditions: sterol stress (sterol starvation) and osmotic stress (the most common stress during fermentation due to high concentrations of sugars).Experiments were performed in 300 mL fermenters without oxygen. Fermentation kinetics were monitored continuously through CO2 production in order to obtain parameters, such as the maximum fermentation rate (Vmax) or total CO2 production. Cell count and cell viability were measured around 80% of fermentation progress. Central carbon metabolism (CCM) metabolites (acetate, glycerol, succinate and residual sugars) were quantified at the end of fermentation.Principal Component Analysis with biological, kinetic and CCM variables revealed the huge phenotype diversity of strains in this study. Analysis of variance (ANOVA) indicated that both the strain and the nature of sterol explained the differences on yeast performances in fermentation. It should be noted that cellular viability is a key parameter in both sterol and osmotic stress. Indeed, strains with a high viability at the end of the fermentation finished fermenting earlier. Finally, ergosterol allowed a better completion of fermentation in both stress conditions tested.These results highlighted the role of sterols in wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Interestingly, sterol nature affected yeast viability, biomass, kinetics parameters and biosynthesis of CCM metabolites

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovana Girardi Piva 

SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,Jean-Roch MOURET (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France)  Virginie GALEOTE (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Jean-Luc LEGRAS (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Erick CASALTA (SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France) Anne ORTIZ-JULIEN (Lallemand SAS, Blagnac, France)

Contact the author

Keywords

wine yeast, sterol starvation, osmotic stress, yeast membrane, alcoholic fermentation

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.