terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of seaweeds extracts applied to grapevine cv Tempranillo

Impact of seaweeds extracts applied to grapevine cv Tempranillo

Abstract

Grapevine is one of the most-frequently phytosanitary treated crop systems. Consequently, restrictions have been applied by the European Commission on the number of pesticide treatments and the maximum quantity of copper fungicides allowed per year. Moreover, there is a need and an increasing demand for more ecological-sustainable agricultural products.
Seaweeds are currently used as fertilizers in viticulture, as they have been proven to be beneficial in several ways related to growth and nutrition. In addition, some seaweeds have shown to induce resistance towards phytopathogenic organisms by stimulating the natural defenses of grapevines.
In this work two seaweed extracts, one from Ulva ohnoi and one from Rugulopteryx okamurae, have been tested in Tempranillo plants in an open-field experiment in Jerez de la Frontera. The goal was to describe their impact on grapequality and microbial ecology.
Interestingly, while treatments did not enhance grape yield, significant differences were found in shoot length and grape composition. Both seaweeds promoted the accumulation of tannins, while anthocyanins were significantly higher only in Ulva treated grapes. Grapes fungal and bacterial identification is being conducted to determine whether seaweeds alter the abundances of important taxa from the winemaking viewpoint.
This is the first field trial applying extracts from the invasive seaweed Rugulopteryx okamurae in grapevine, and while the experiment should be repeated on time, this seaweed extract is sought to be a promising solution meeting viticultural demands. At the same time, its use in agriculture could contribute to decreasing the algae accumulation from our coasts.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan José Cordoba-Granados1, Asier Cámara2, Rocío Gutierrez-Escobar1, María Jesús Jiménez-Hierrro1, María Isabel Fernandez-Marin1, Belén Puertas García1, Iratxe Zarraonaindia2,3, Emma Cantos-Villar1*

1 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cádiz, Spain
2 Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa (Bizkaia), Spain
3 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Contact the author*

Keywords

quality, polyphenols, microbiome, Ulva ohnoi, Rugulopteryx okamurae

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Water deficit profoundly impacts the quality of grapes and results in considerable reductions in crop yield. First symptoms manifest with reduced stomatal conductance and transpiration, accompanied by the wilting of apical leaves and tendrils. So far, there is no available data on the water stress response in Croatian grapevine germplasm. Therefore, objective of this study was to determine influence of genotype and treatment on stomatal conductance (gsw), transpiration (E), electron transport rate (ETR), and quantum efficiency in light (PhiPS2).

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Managing local field variability in the framework of precision viticulture

Managing grapevines according to the practices of Precision Agriculture (PA), may prove to be an asset in the hands of the modern grape growers.

Protein stabilization of white wines by stabilizing filtration: pilot studies

Protein stabilization is an important part of the winemaking process of white wines, and in this work we present the results of protein stabilization of different monovarietal wines (Xarel.lo, Chardonnay, and Muscat) by a continuous stabilizing filtration process using a column packed with zirconium oxide operating in a continuous regime in a closed loop at pilot scale.