terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of seaweeds extracts applied to grapevine cv Tempranillo

Impact of seaweeds extracts applied to grapevine cv Tempranillo

Abstract

Grapevine is one of the most-frequently phytosanitary treated crop systems. Consequently, restrictions have been applied by the European Commission on the number of pesticide treatments and the maximum quantity of copper fungicides allowed per year. Moreover, there is a need and an increasing demand for more ecological-sustainable agricultural products.
Seaweeds are currently used as fertilizers in viticulture, as they have been proven to be beneficial in several ways related to growth and nutrition. In addition, some seaweeds have shown to induce resistance towards phytopathogenic organisms by stimulating the natural defenses of grapevines.
In this work two seaweed extracts, one from Ulva ohnoi and one from Rugulopteryx okamurae, have been tested in Tempranillo plants in an open-field experiment in Jerez de la Frontera. The goal was to describe their impact on grapequality and microbial ecology.
Interestingly, while treatments did not enhance grape yield, significant differences were found in shoot length and grape composition. Both seaweeds promoted the accumulation of tannins, while anthocyanins were significantly higher only in Ulva treated grapes. Grapes fungal and bacterial identification is being conducted to determine whether seaweeds alter the abundances of important taxa from the winemaking viewpoint.
This is the first field trial applying extracts from the invasive seaweed Rugulopteryx okamurae in grapevine, and while the experiment should be repeated on time, this seaweed extract is sought to be a promising solution meeting viticultural demands. At the same time, its use in agriculture could contribute to decreasing the algae accumulation from our coasts.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan José Cordoba-Granados1, Asier Cámara2, Rocío Gutierrez-Escobar1, María Jesús Jiménez-Hierrro1, María Isabel Fernandez-Marin1, Belén Puertas García1, Iratxe Zarraonaindia2,3, Emma Cantos-Villar1*

1 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Rancho de la Merced, Consejería de Agricultura, Pesca, Agua y Desarrollo Rural, Junta de Andalucía, Cádiz, Spain
2 Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa (Bizkaia), Spain
3 IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Contact the author*

Keywords

quality, polyphenols, microbiome, Ulva ohnoi, Rugulopteryx okamurae

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Is wine terroir a valid concept under a changing climate?

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.

The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

The 1365 ha of the Genevese vineyard are located at the south-western corner of the Swiss plateau, between 395m and 505 m altitude.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.