terclim by ICS banner
IVES 9 IVES Conference Series 9 Metabolomics of Vitis davidii Foëx. grapes from southern China: Flavonoids and volatiles reveal the flavor profiles of five spine grape varieties

Metabolomics of Vitis davidii Foëx. grapes from southern China: Flavonoids and volatiles reveal the flavor profiles of five spine grape varieties

Abstract

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of these compounds highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and free norisprenoids (2.60 to 11.46 μg/kg FW). Seputao contained relatively higher concentrations of anthocyanins, flavonols and free volatile phenols. Baiputao was characterized by higher concentrations of skin flavanols, with more terpenoids and norisoprenoids in the free form. Ziqiu had a higher concentration of bound benzenoids. Miputao had the lowest flavonols. Their characteristic flavor compounds of were subsequently revealed using multivariate statistical analysis. The results helped the producers to further develop and utilize the spine grapes.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ning Shi1,2, Qiu-Hong Pan1,2, Jun Wang1,2,*

1 Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
2 Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

Contact the author*

Keywords

Chinese wild grape, Diglucoside anthocyanin, Volatile phenol

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).

Franciacorta DOCG sparkling wine interpretation in relation to wine coming from different areas

Dans la tradition classique, les vins mousseux sont le produit d’assemblage des vins d’origine différent. La choix de la typologie du moussage (brut, extra-brut, dosage zéro, etc.) généralement est une conséquence des résultats organoleptiques atteints à la fin de le période d’affinement en bouteille.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

Cooling the berries, protecting the vines: techniques for managing grapevines during periods of extreme heat

In this video recording of the IVES science meeting 2025, Alena Wilson (University of Torino, Alba, Torino, Italy) speaks about techniques for managing grapevines during periods of extreme heat. This presentation is based on an original article accessible for free on OENO One.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.