terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes


The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change. The prevalent iso- or aniso-hydric behavior of grapevine varieties can be mitigated by the soil draining capacity: in the anisohydric Syrah grown in pots and in controlled conditions, an ABA-related stomatal closure was induced in water-retaining soils, resulting in a superimposition of the soil-related hormonal root-to-shoot signal respect to the putative genotypic-induced anisohydric response to water stress. In two consecutive years (2012 and 2013) we analyzed Nebbiolo water relations in two rain-fed vineyards (distance as the crow flies between the two was about 250 m) located on the Cannubi hill (Barolo area, Langhe Wine District, Piedmont, Italy). Vines were grafted on Vitis berlandieri x V. riparia rootstocks and soil were classified (USDA) as silty-loam (with 18 % of clay) and as loam (13 % of clay). We measured stomatal conductance, stem water potential, ABA leaf content and the main berry quality parameters. In 2013, the vineyard management (winter and green pruning, and bunch balance according to ‘Yield to Pruning Weight’ and ‘Leaf Area to Crop Weight’ ratios) allowed to avoid any discrepancies in the two vineyards vegetative-productive balance. Data showed that when drought was prolonged, Nebbiolo reduced its anisohydricity acting drought-induced stomatal closures earlier and for a longer period in the silty-loam soil, (richer in clay and more compact), respect to the loamy soil. The silty-loam soil determined a higher leaf ABA content during the season. This fact could explain the improved qualitative traits of berries harvested in the vineyard in the 18% clayey soil such as a higher content of anthocyanins (mg/berry), with a higher level of acylation (increase of color stabilization) and a higher content of free terpenes, following ABA-triggered metabolite responses.

Acknowledgements: authors warmly acknowledge Damilano cellar for hosting the trial.


Publication date: October 11, 2023

Issue: ICGWS 2023

Type: Poster


Alessandra Ferrandino1*, Antonio Carlomagno2, Gianpiero Romana3, Claudio Lovisolo1

1 DISAFA – University of Turin, Largo Braccini 2, Grugliasco (TO)
2 DiCEM – University of Basilicata, Via Lanera 20, Matera (MT)
Agronomist, Consultant

Contact the author*


soil texture, stomatal conductance, leaf water potential, anthocyanins, free terpenes


2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series


Related articles…

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Extreme vintages affect grape varieties differently: a case study from a cool climate wine region

Eger wine region is located on the northern border of grapevine cultivation zone. In the cool climate, terroir selection is one of the foundations of quality wine making. However, climate change will have a significant impact on these high value-added vineyards. This study presents a case study from 2021 and 2022 with the investigation of three grape varieties (Kadarka, Syrah, Furmint). The experiment was conducted in a steep-sloped vineyard (Nagy-Eged hill) with a southern exposure.